
BACKGROUND
Nonlinearity and Hysteresis definitions were developed to char-

acterize performance of common sensors such as scales and load 

cells. Those definitions are widely used to characterize Torqueme-

ters. Despite the similarities between Torquemeters and modern 

weighing devices, there are significant differences between them 

and their applications. Most important, real-world Torque sig-

nals are invariably dynamic whereas weighing, and most load 

measurements, are primarily static.

Thus, when those definitions are applied to Torquemeters, 

the results can be misleading, and, the conclusions based on 

them, wrong. This note describes traditional definitions as well as  

others that more accurately characterize real-world performance 

of Rotating and Reaction Torquemeters, used under dynamic 

conditions.  It includes definitions, now used by Himmelstein, 

which provide the basis for valid product comparisons.  It also 

discusses the impact Nonlinearity, Hysteresis and Overrange have 

on accuracy.  Static characteristics such as temperature effects are 

valid for all common sensors and are not covered.

NONLINEARITY
To avoid errors, a Torquemeter’s output must faithfully reflect 

its input. When it is nonlinear, its output contains errors in 

the average torque as well as its dynamic components (inevitably 

present on drivelines and other dynamic applications; see 

Himmelstein Application Note 221101D). Nonlinearity also 

generates output frequencies not present in the input torque. 

They include harmonics of the input frequency(s), and sum 

and difference frequencies; see Appendix 1. This situation is 

exacerbated during transient conditions. The only way to avoid 

such errors is to use a Torquemeter with minimal, correctly 

characterized, Nonlinearity, Hysteresis and Overrange.

Using a computer or microprocessor-based signal conditioner, 

it’s possible to “linearize” the calibration stand response of a 

nonlinear torquemeter. However, this procedure is only valid 

when the torque signal is static, i.e. has no sinusoidal  

components, perturbations, torque reversals, inertia torques, 

etc. – that’s never the case for a Rotating or other dynamic 

torque measurement, see Application Note 221101D. Although 

“linearization” can yield a very linear response on a calibra-

tion stand,  it will produce significant additional errors in 

real-world, dynamic applications.  The reported average torque 

will be in error and frequencies not present in the input signal, 

including harmonics of the input torque frequencies and sum and  

difference frequencies, will be generated; see Appendix 1.

Using a “linearizer” for a dynamic torque signal processes 

the distorted signal through another non-linear element. Not 

only can it not remove the signal’s distortion components, but, it 

increases their number. Beware of a Torquemeter that includes 

linearization software. While it can improve the linearity  

of a static calibration, it will generate additional errors in 
dynamic, “real world” applications. 

To determine a Torquemeter’s Nonlinearity, one applies 

ascending and descending loads (usually 10 CW and 10 CCW) 

from a low uncertainty, Accredited Torque Calibration Stand 

and records the outputs. Nonlinearity is defined as the output’s 

greatest deviation of ascending data from a reference line that 

emulates the Torquemeter’s ascending response. It is expressed 

as a percentage of full scale.

The reference line often includes the end point but, it can 

intercept any one, two or no calibration points. When it includes 

the end point, the result is called End Point Nonlinearity. End Point 

Nonlinearity is simple to evaluate even without a computer.  

However, a line through the end point, or any other point is 

arbitrary and virtually never best characterizes the  

Torquemeter. As a result, when using the End Point, the sensor’s 

reported Nonlinearity is invariably different than its true 

Nonlinearity.  A more accurate Nonlinearity is obtained by using 

a Least Squares Reference Line.

In summary, the output of any real world Torquemeter will 
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deviate from a straight line.  Conventionally, the output’s  

deviation from a Reference Line is determined for each 

ascending load point.  Device Nonlinearity is defined as the 

greatest difference between the Torquemeter’s ascending 

output and the Reference Line.  The Reference Line can be 

End Point, Zero Point, Least Squares, or others.  Each of those 

Reference Line types will produce a different result.  There-

fore it is critically important to know which is used and its 

limitations when comparing or evaluating published linearity 

specifications.

HYSTERESIS
During calibration, the difference between the ascending 

and descending outputs at each load point is also calculated.  

Hysteresis is defined as the greatest difference between those 

values.  It is expressed as a percent of full scale.  Hysteresis is  

separately determined for CW and CCW torque directions.  A 

Torquemeter’s Hysteresis is the greater of its CW and CCW values.

A Torquemeter will never see an error equal to Hysteresis 

as defined above.  The Hysteresis error it sees is the deviation 

from the Reference Line, not the difference between ascending 

and descending values.  Furthermore, in the conventional defini-

tion of Nonlinearity, the descending response is ignored.  Because 

virtually all torque measurements are dynamic and include torque 

oscillations and reversals, the descending part of the response 

curve must be included to accurately depict Torquemeter 

performance including Hysteresis effects.

COMBINED LINEARITY AND HYSTERESIS
A practical solution is to calculate the actual Error Band (EB), 

as follows.  All ascending and descending calibration data is 

used to compute a Best-Fit Reference Line (BFL) for both CW 

and CCW directions.  Then the greatest deviation from the 

BFL is found for CW and CCW loadings.  The Torquemeters’ 

Combined Nonlinearity and Hysteresis is the greater of the 

CW and CCW deviations.  This method has the advantage of 

accounting for ascending and descending response while in-

trinsically accounting for Hysteresis.  Himmelstein now uses 

this definition for specifying and evaluating all its Torquemeter 

products.  Not only does it realistically account for both ascend-

ing and descending data, but the reference BFL is based on 

all calibration steps (usually 21) and most closely matches the 

transducer.

Although more difficult to compute, a Best Fit Line (BFL) 

minimizes the difference between it and every ascending and 

descending calibration step.  No other Reference Line can 

more accurately characterize a Torquemeter.

The diagram shown below is a typical calibration curve 

greatly exaggerated for clarity. It includes ascending and 

descending data, a Best Fit Reference line, and Error Band 

(EB) boundaries. When derived in this manner the Combined 

Error is conservative, i.e. the actual error is  less than the error 

boundary values for all loads, except the two at the maximum 

error point(s).
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Calibration Data of 1,200,000 lbf-in (135.6 kNm) Torquemeter
(Calibration Serial Number 500288)

Clockwise Output (mV/V) Counterclockwise Output (mV/V)

Input Torque (lbf-in) Ascending Descending Ascending Descending

0 -0.0004 0.0021 0.0002 0.0001

120,000 0.2729 0.2768 -0.2699 -0.2658

240,000 0.5428 0.5505 -0.5370 -0.5352

360,000 0.8151 0.8217 -0.8050 -0.8060

480,000 1.0876 1.0908 -1.0738 -1.0776

600,000 1.3600 1.3599 -1.3434 -1.3476

720,000 1.6318 1.6294 -1.6143 -1.6185

840,000 1.9018 1.8989 -1.8864 -1.8885

960,000 2.1711 2.1680 -2.1577 -2.1601

1,080,000 2.4393 2.4375 -2.4288 -2.4313

1,200,000 2.8080 -2.7012

OVERRANGE  
Unless a Torquemeter has adequate Overrange it will  

clip dynamic torque peaks in the upper part of its range. 

When that happens its output will contain additional large 

errors and its distortion components will be greatly  

magnified. All Himmelstein Digitally-based Torquemeters 

have between 150% and 300% Overrange, model dependent. 

Typical Combined Error in the Overrange region is 0.04%, 

maximum Combined Error is  0.1%. See Himmelstein  

Application Note  20805B for more information on the  

critical importance of Torquemeter Overrange.

ILLUSTRATIVE EXAMPLES
The first table summarizes the calibration of a non-Himmelstein 

Torquemeter performed in our laboratory. The next compares 

results using reference lines based on End Point, Least Squares 

and Best Fit Line. It shows significant differences in Nonlinearity 

and Combined Error when analyzed with different reference 

lines. When classifying modestly accurate Torquemeters such as 

this, valid performance evaluations and or comparisons can only 

be made when the most precise analysis method is used. In any 

case, you should know and understand the analysis method used 

and its limitations. 

Analysis of 1,200,000 lbf-in (135.6 kNm) Torquemeter (Calibration Serial Number 500288)
Unit of Measure: Percent of Full Scale

Reference Line ➧ End Point Least Squares Best Fit Line

CW Nonlinearity 0.264* 0.158*

CCW Point Nonlinearity 0.263* 0.141* Imbedded in

CW Hysteresis 0.284 0.284 Combined Error.

CCW Hysteresis -0.155 -0.155

CW Combined Error 0.388** 0.325** 0.177***

CCW Combined Error 0.305** 0.210** 0.135***

* Based on ascending calibration data.
** Computed as ((Nonlinearity)ˆ2 + (Hysteresis) ˆ2)ˆ0.5

*** BFL Reference is based on all 21 ascending and descending calibration steps.
CW BFL: Slope = +2.257000e-06, Intercept = +4.390000e-03
CCW BFL: Slope = -2.251296e-06, Intercept = +3.738889e-03
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Calibration Data of 20,000 lbf-in (2.26 kNm) Himmelstein Digital Torquemeter
(Calibration Serial Number 1005132)

Clockwise Counterclockwise

Input Torque Torquemeter Output (lbf-in) Input Torque Torquemeter Output (lbf-in)

 (lbf-in) Ascending Descending (lbf-in) Ascending Descending

0.0 0.3 0.3 0.0 -0.3 -0.4

 1998.9 1998.4 1998.9 1999.3 -1999.2 -1999.6

 3997.7 3997.4 3997.9 3998.6 -3998.7 -3998.8

 5996.6 5996.4 5996.7 5997.9 -5998.0 -5998.0

 7995.5 7995.4 7995.8 7997.2 -7997.1 -7997.3

 9994.4 9994.2 9994.7 9996.5 -9996.3 -9996.9

 11993.2 11993.2 11993.8 11995.8 -11996.0 -11996.3

 13992.1 13991.9 13992.8 13995.1 -13995.5 -13995.5

 15991.0 15990.7 15991.9 15994.4 -15994.7 -15995.1

 17989.8 17989.7 17990.6 17993.7 -17993.8 -17994.4

 19988.7 19988.3 19993.0 -19993.3

Analysis of 20,000 lbf-in (2.26 kNm) Himmelstein Digital Torquemeter
(Calibration Serial Number 1005132)
Unit of Measure: Percent of Full Scale

Reference Line ➧ End Point Least Squares Best Fit Line

CW Nonlinearity 0.004* 0.004*

CCW Nonlinearity 0.002* 0.002* Imbedded in

CW Hysteresis 0.006 0.006 Combined Error.

CCW Hysteresis 0.003 0.003

CW Combined Error 0.007** 0.007** 0.003***

CCW Combined Error 0.004** 0.004** 0.002***

* Based on ascending calibration data.
** Computed as ((Nonlinearity)ˆ2 + (Hysteresis) ˆ2)ˆ0.5

*** BFL Reference is based on all 21 ascending and descending calibration steps.
CW BFL: Slope = +1.0000083, Intercept = 0.0999992
CCW BFL: Slope = -1.0000188, Intercept = -0.00625

The next table contains calibration data of a very accurate 

Himmelstein Digital Torquemeter; Model MCRT 84004V(2-4)

JOB. The last table summarizes its performance based on dif-

ferent analysis  methods. High precision devices yield virtually 

identical results when analyzed with each method. If a Torqueme-

ter were perfect, then all analysis methods will produce the same 

result, i.e., Nonlinearity, Hysteresis and Combined Error equal to 

zero. Nonetheless, the most accurate results will be achieved with 

the Best Fit Line method described above.
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Appendix 1 

How Nonlinearity Creates 
Amplitude Errors and Erroneous, 

Nonexistent Signals

Aproperly functioning Torquemeter’s response curve is 

 smooth, and without gaps. If that isn’t the case, it is 

defective and should be repaired or replaced. Accordingly, a 

properly functioning Torquemeter’s response can be described 

by the following power series.

Output = a0 + a1Tin + a2Tin2 +  a3Tin3 +  a4Tin4 +  a5Tin5 +     (1)

Where a0, a1, a2 etc. are constant coefficients and  
Tin is the input Torque.

If the Torquemeter is perfectly linear, then its response is 

described by the first two terms. The following table contains 

the coefficients for equations of the 1st through 5th order. It 

is based on least square calculations that include both the 

ascending and descending CW response of the 1,200,000 lbf-in 

Torquemeter previously discussed. Also included is the Akaike 

Info Criterion (AICc); the best model has the lowest AICc.

Based on the Akaike Info Criterion, it’s clear the 2nd order 

equation is the best model for this Torquemeter. Therefore, for 

this analysis, we will use the 2nd order response. Further assume 

the dynamic input has an average value and two sinusoidal  

components. Thus, the input signal is:

Tin = Ta + Tb (sin ωb t) + Tc (sin ωc t)

Where Ta is the average value of the input torque and Tb is 

the peak amplitude of the sinusoidal component whose angular 

velocity is ωb. Similarly, Tc is the peak amplitude of the sinusoidal 

component whose angular velocity is ωc. If the Torquemeter were 

perfectly linear, it would output a scaled, mirror image of the 

input. That is, an average value directly proportional to Ta, a sine 

wave with ωb  angular velocity and amplitude directly propor-

tional to Tb and another with ωc angular velocity and amplitude 

directly proportional to Tc. The following steps show what is 

actually output.

The Torquemeter Output = a0 + a1Tin + a2Tin2

Substituting Tin in the Output equation, yields

Output = a0 + a1[Ta + Tb (sin ωb t) + Tc (sin ωc t)] + 
a2[ Ta + Tb (sin ωb t) + Tc (sin ωc t)] 2

Simplifying and using trigonometric identities for  

(sin ωt) 2 and (sin ωb t) (sin ωc t ) yields: 9 terms. An average 

value (dc) term with error components, the two original 

sinusoidal terms with the correct amplitude proportional-

ity, those same sinusoids with distorted amplitude propor-

tionality, the second harmonic of each input sinusoid, and 

sinusoids whose frequencies are the sum and difference of 
(2)

(3)

(4)

 Polynomial Order 1 2 3 4 5

a0 4.757248e-03 1.536968e-03 1.145535e-03 1.054976e-03 8.586305e-04

a1 2.255475e-06 2.274155e-06 2.279515e-06 2.282194e-06 2.295171e-06

a2 -1.622418e-14 -2.828503e-14 -3.962629e-14 -1.292879e-13

a3 6.904549e-21 2.227578e-20 2.341596e-19

a4 -6.517705e-27 -2.101401e-25

a5 6.840371e-32

AICc -1.7847e+02 -1.8966e+02 -1.8695e+02 -1.8348e+02 -1.7983e+02
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the input signal frequencies. The exact output responses are 

listed below.

a0 + a1Ta + a2Ta2 + a2Tb2/2 + a2Tc2/2 

(average torque term. a0 can be zeroed out, a1Ta is the correct  
average torque output. The other terms are erroneous and  
cannot be corrected because they include unknown dynamic 
signal amplitudes)

+ a1 Tc (sin ωc t) + 2 a2 Ta Tc (sin ωc t)

(ωc sinusoidal terms. 1st term is correct, the 2nd is an error 
 component that cannot be corrected because it includes 
unknown dynamic signal amplitudes.)

+ a1 Tb (sin ωb t) + 2 a2 Ta Tb (sin ωb t) 

(ωb sinusoidal terms. 1st term is correct, the 2 nd is an error  
component.)

- a2 Tb2(cos 2ωb t)/2 

(2nd harmonic of ωb . This is an error term not present in the  
signal.)

- a2 Tc2(cos 2ωc t)/2 

(2nd harmonic of ωc . This is an error term not present in the  
signal.)

+ a2 Tb Tc (cos (ωb - ωc) t)  -   a2 Tb Tc (cos ( ωb + ωc ) t) 

(sum and difference frequencies, both are error components  
not present in the signal.) 

Thus, the output contains error components added to the 

correct average value, error components added to both sinu-

soidal inputs, and sinusoids not in the input signal including 

second harmonics and sum and difference frequencies. 

When more than two signal frequencies are present, additional 

sum and difference frequencies and harmonics will be output. If 

only a single signal frequency is present, errors will be generated 

in the average value, in the amplitude of the signal frequency, and 

a second harmonic of that frequency will be created.

When the devices Nonlinearity requires higher order 

terms to accurately represent it then, the number of distor-

tion components increases. For example, when a third 

order term is required, a third harmonic of each sinusoid is 

generated –- sin 3 (ωt) = 1/4 (3 sin  (ωt) - sin (3 ωt)). To avoid 

such errors, the Torquemeter must have an inherently  

linear response. “Linearizing” its response does not  

eliminate these errors, it compounds them.

(5)

(6)

(7)

(8)

(9)
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