

MCRT® 48200V

NON-CONTACT, DC OPERATED COMPACT DIGITAL TORQUEMETERS

Torque Ranges: 25 to 10,000 lbf-in (2.83 to 1,130 N-m)

±10 Volt or ±5 Volt Analog Output with 0.02% Resolution and Low Noise & Ripple

14 Bit Engineering Unit Output Via Com Port; Includes PC Interface Software and Cable

No Pots, Switches or Manual Adjustments, 11 Selectable Signal Filters

Strain Gage Sensing in a Robust, Compact Assembly

High Strength Alloy Steel Shaft with 200% Torque Overload Capacity

NIST Traceable* Bidirectional Calibration

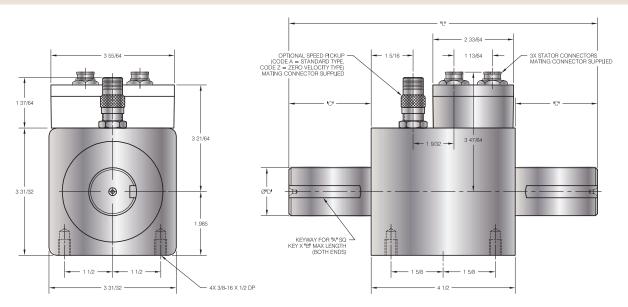
Noise Tolerant - Compatible with IGBT-based Adjustable Speed Drives

Optional Speed Pickup

To power and display Torque only, use a Model 703+. To power and display Torque, Speed and HP, use a Model 723+. See Bulletins 372 & 374.

*NIST traceable calibration performed in our accredited laboratory (NVLAP Lab Code 200487-0). For details visit www.himmelstein.com or follow the accreditation link at www.nist.gov.

General Specification	IS	Code N Performance	Code C Performance			
Accuracy (combined nonlinearity, hys	steresis and nonrepeatability, % of Range)	≤ ±0.2 ≤ ±0.15				
Remote Calibration Accuracy* (% of Range @ 75 °F/23.9 °C, traceable to NIST)		≤ ±0.1	≤ ±0.05			
	Zero Drift (% of Range/°F)/(% of Range/°C)	≤ ±0.004/≤ ±0.007	≤ ±0.0017/≤ ±0.003			
Tamanatura Effacts	Span Drift (% of Reading/°F)/(% of Reading/°C)	≤ ±0.004/≤ ±0.007	≤ ±0.0017/≤ ±0.003			
Temperature Effects:	Compensated Range (°F)/(°C)	+75 to +150/+	23.9 to +66			
	Usable Range (°F)/(°C)	$ \leq \pm 0.2 $	+32 to +175/0 to +79.4			
Analog Output:	CW/CCW Output at Full Scale	+10V/-10V or +5V/-5V, user selectable. Default is +10V/-10V.				
(Resolution: 0.02% on ±10V	Bandwidth (has Bessel Response Signal Filters)	DC to 0.1Hz thru 200Hz in eleven 1-2-5 steps, user selectable.				
& 0.04% on ±5V output)	Noise and Ripple (rms, % of Range)	0.1				
(Source Impedance: < 1Ω)	Overrange (% of Full Range, nominal)	o NIST) $\leq \pm 0.1$ $\leq \pm 0.05$ if Range/°C) $\leq \pm 0.004/\leq \pm 0.007$ $\leq \pm 0.0017/\leq \pm 0.003$ of Reading/°C) $\leq \pm 0.004/\leq \pm 0.007$ $\leq \pm 0.0017/\leq \pm 0.003$ $+75 \text{ to } +150/+23.9 \text{ to } +66$ $+32 \text{ to } +175/0 \text{ to } +79.4$ $+10V/-10V \text{ or } +5V/-5V, \text{ user selectable. Default is } +10V/-10V.$ se Signal Filters) DC to 0.1Hz thru 200Hz in eleven 1-2-5 steps, user selectable. Inge) 0.1 Inimal) 30 Index Capacitive Loads $10 \text{k}\Omega$ Minimum and 0.05uF Maximum $0.05 $				
	Maximum Allowable Resistive and Capacitive Loads	10kΩ Minimum and 0.05uF Maximum				
Rotational Effect on Zero	(% of Range)	≤ ±0.05	≤ ±0.025			
RS232C Port: (115.2 kBaud)	Outputs Torque in Engineering Units. Inputs units of meas	ure selection, scaling, signal filter selection, z	ero, span, cal data and commands.			
Supply Voltage	10 to 15 VDC @ 200 mA, nominal. Has reverse polarity and	20 Volt overvoltage protection.				
Available Options		ode Z is Zero Velocity type, Code N denotes n				


MCRT* 48200V Digital Torquemeters have high accuracy, low noise, high overload capacity, high overrange, inherent noise tolerance and a wide temperature range. State-of-the-art strain gage sensing and non-contact signal transfer suit them for control, laboratory and production use. Two grades are made; Code N standard performance and Code C enhanced performance. They can be floated or foot mounted with the integral mounting base. Do Cal Checks and Auto-Zero using control lines, or from your computer.

Included software interfaces with Windows-based PC's. Use it to: display torque, re-scale, run a Cal Check, Auto-Zero, select from 10 units of measure without recalibration, select from 11 signal filters, invoke password protection. Your PC and included software will display current, peak, valley and spread engineering unit data, will classify limits, and do real time plotting. It also saves data to disk and stores your test setup parameters. If you re-calibrate, the original calibration is archived. A sensor to PC cable is provided.

MCRT® MODEL	TORQUE RANGE		TORQUE OVERLOAD		SPEED RAT	ING* (RPM)	SHAFT STIFFNESS**	ROTATING INERTIA	MAX WT.
	[lbf-in]	[N-m]	[lbf-in]	[N-m]	Code N	Code C	[lbf-in/radian]	[ozf-in sec²]	[lbs]
48201V(25-0)	25	2.82	50	5.65	0 to ±8,000	0 to ±15,000	1,800	0.031	10
48201V(5-1)	50	5.65	100	11.3	0 to ±8,000	0 to ±15,000	5,000	0.031	10
48201V(1-2)	100	11.3	200	22.6	0 to ±8,000	0 to ±15,000	12,000	0.031	10
48201V(2-2)	200	22.6	400	45.2	0 to ±8,000	0 to ±15,000	26,000	0.031	10
48202V(5-2)	500	56.5	1,000	113	0 to ±7,000	0 to ±12,000	66,000	0.032	10
48202V(1-3)	1,000	113	2,000	226	0 to ±7,000	0 to ±12,000	85,000	0.032	10
48203V(2-3)	2,000	226	4,000	452	0 to ±6,500	0 to ±8,500	288,000	0.080	10
48204V(5-3)	5,000	565	10,000	1,130	0 to ±6,000	0 to ±8,500	545,000	0.100	11
48204V(1-4)	10,000	1,130	20,000	2,260	0 to ±6,000	0 to ±8,500	684,000	0.100	12

^{*} Ratings are for continuous operation without external lubrication.

^{**}Stiffness is conservatively rated and includes the torsion section and shaft ends.

MCRT® DIMENSIONS [inches]				4 PI	N TORQUE CONNECTOR	SPEED PICKUP CONNECTOR						
MODEL	Α	В	С	D	L	1	Analog Output	CODE A PICKUP		CODE Z PICKUP		
48201V	0.187	1.000	1.500	0.625 +0.0000/-0.0005	7.500	2	Analog Ground	A Signal		А	+ Power In (5 to 15Vdc)	
48202V	0.187	1.000	1.500	0.750 +0.0000/-0.0005	7.500	3 CW Cal Check (short 3 to 2)		В	Signal	В	Output Signal	
48203V	0.250	1.063	1.563	1.000 +0.0000/-0.0005	7.625	4	CCW Cal Check (short 4 to 2)			С	Common	
48204V	0.375	1.625	2.563	1.500 +0.0000/-0.0005	9.625	Auto-	Zero (short 3 & 4 to 2 for 5 seconds)			2 PIN POWER CONNECTOR		
						3 P	3 PIN RS232C CONNECTOR			1	Power Ground	
						1	TXD			2	+ Power In (10 to 15Vdc)	
SUP	SUPPORTED UNITS OF MEASURE (default = lbf-in)			2	Ground	Order #	MCRT 48202V	(5-2)	N or C	A, Z or N		
lbf-in, lb	lbf-in, lbf-ft, ozf-in, ozf-ft, N-m, kN-m, N-cm, kgf-m, kgf-cm, gf-cm				3	RXD		Model No.	Range	Performance	Speed Pickup	

S. Himmelstein and Company

Designing and Making the World's Best Torque Instruments since 1960