

Multi-Channel
Signal Conditioner
Display
and Controller

TABLE OF CONTENTS

GETTING STARTED 1
General Features 1
Installation 2
Power Up Display (Model Number Information) 3
Rear Panel 4
Front Panel 5
MENU Key 6
VIEW Key 6
TEST Key 7
TARE Key 7
HOLD Key 8
ESC/RESET Key 8
Cursor Keys 8
ENTER Key 9
MENU BASICS 11
CHAN SETTINGS 13
Filter 13
Limits 14
LO Limit 14
LO Hysteresis 14
LO Latch 15
HI Limit 15
HI Hysteresis 15
HI Latch 16
Limit Mode 16
Limit Type 17
Limit Alarm 17
Units 18
Display Resolution 18
TARE Key 19
RESET Key (Clear Tare) 19
Max/Min Type 19
RESET Key (Reset UDCA Counter) 20
CHAN CALIBRATION (MODEL ACUA) 21
Type of CAL 22
Full Scale 23
Zero Value 23
+CAL Value | +Load Value 23
CAL Value | -Load Value 24
To CAL Transducer (Shunt Calibrations) 24
To Zero Transducer (Load Calibrations) 25
To do +CAL (Load Calibrations) 25
To do -CAL (Load Calibrations) 26
Test Signals 26
CHAN CALIBRATION (MODEL LVDA) 27
Excitation Frequency 28
Type of CAL 29
Full Scale 29
Zero Point 30
+CAL Point 30
CAL Point 30
To Zero LVDT 31
To do +CAL 31
To do -CAL 32
Test Signals 32
CHAN CALIBRATION (MODEL DCSA) 33
Type of CAL 34
Full Scale 35
Zero Value (Shunt and Load Calibrations) 36
+CAL Value | +Load Value $\mid \mathrm{mV} / \mathrm{V}$ @ +FS 36
-CAL Value | -Load Value | mV/V @ -FS 36
To CAL Transducer (Shunt Calibrations) 37
To Zero Transducer (Load Calibrations) 38
To do +CAL (Load Calibrations) 38
To do -CAL (Load Calibrations) 39
To CAL Transducer (mV/V Calibrations) 40
Test Signals 40
CHAN CALIBRATION (MODEL DCVA) 41
Type of CAL 42
Full Scale 43
Zero Value 43
+CAL Value | +Load Value 43
CAL Value | -Load Value 44
To CAL Transducer (Remote Calibrations) 44
To Zero Transducer (Load Calibrations) 45
To do +CAL (Load Calibrations) 45
To do -CAL (Load Calibrations) 46
Test Signals 46
CHAN CALIBRATION (MODEL DCIA) 47
Input Range 47
Full Scale 48
Adjust DCIA 48
Test Signals 49
CHAN CALIBRATION (MODEL CTUA) 51
Full Scale 51
Transducer Frequency | Transducer Value 52
Input Type 54
Polarity 55
Input Filter 55
Lowest Frequency 55
Test Signals 56
CHAN CALIBRATION (MODEL UDCA) 57
Full Scale 57
Transducer Pulses | Transducer Value 58
Count Mode 59

+ Direction (1X, 2X, 4X Count Modes) 61
Count Edge (Event Count Mode) 62
Reset Arm Signal 62
Reset Signal 63
Reset Mode 64
Test Signals 66
CHAN CALIBRATION (CH3 CALCULATION) 67
Full Scale 67
Calculation 68
Constant A | Constant B | Constant C 71
SYSTEM OPTIONS 73
Adjust Contrast 73
Backlight 73
Menu Password 74
Check Limits 74
Do Max/Mins 74
Power Up 74
Power Up View 75
Power Up CHAN 75
Power Up Type 75
State Machine 76
LOGIC I/O 77
Input Actions 79
Tare 80
Clear Tare 80
Hold 80
Clear Hold 81
Reset Max/Mins 81
Clear Latched Limits 81
Check Limits 82
Do Max/Mins 82
Apply +CAL 83
Apply -CAL 83
Reset Count 83
Output Events 84
HI Limit 85
NOT HI Limit 85
IN Limit 85
NOT IN Limit 85
LO Limit 85
NOT LO Limit 86
At Max 86
NOT At Max 87
At Min 87
NOT At Min 88
Define Patterns 89
Pattern1 to Pattern8 90
Pattern/State Outputs 91
Pattern1 OUT to Pattern8 OUT 92
State 1 OUT to State8 OUT 92
NOT Pattern1 OUT to NOT Pattern8 OUT 93
NOT State1 OUT to NOT State8 OUT 93
ANALOG OUTPUTS 95
Channel used for Analog Output 1 97
Channel used for Analog Output 2 97
Adjust Analog Outputs 97
COM OPTIONS 99
BAUD Rate 99
Data Bits/Parity 99
Unit ID 100
APPENDIX A, REAR PANEL CONNECTORS 101
I/O Connector 101
Examples of Typical Logic Input Sources 102
Examples of Typical Logic Output Loads 102
Model ACUA Connector 103
Typical AC Strain Gage Transducer Cable 104
Model LVDA Connector 105
Typical LVDT Transducer Cable 106
Model DCSA Connector 107
Typical DC Strain Gage Transducer Cable 108
Model DCVA Connector 109
Typical DC Voltage Transducer Cable 110
Model DCIA Connector 111
Typical Transmitter (2 wire) Cable 112
Typical Transmitter (4 wire) Cable 112
Model CTUA Connector 113
Typical Passive Speed Pickup Cable 114
Typical Zero Velocity Speed Pickup Cable 114
Typical Encoder (with Quadrature Signals) Cable 114
Model UDCA Connector 115
Typical Rotary Encoder (with Index Pulse) Cable 116
Typical Encoder (with Reset Switch) Cable 116
Examples of Typical Reset and Reset Arm Sources 117
Examples of Typical Input A (Event) Sources 117
COM Connector 118
Typical RS485 Cable 119
Typical RS232 Cable 120
APPENDIX B, INSIDE THE CABINET 121
Opening the Cabinet 121
Jumpers and Fuses 122
Password Enable/Disable Jumper 123
Analog Outputs 5V/10V Selection Jumpers 123
RS232/422/485 Selection Jumper 123
RS485/422 Termination Jumpers 124
Logic Output Fuses 124
Analog Output Fuses 124
External +5V Fuse 124
Module Removal 125
CAL Resistor Installation (Models ACUA and DCSA) 126
Excitation 5V/10V Selection Jumper (Model DCSA) 127
Option MA Current Output 128
Option MB Current Output 129
Option MC Voltage Output 130
APPENDIX C, RESETTING MEMORY TO DEFAULTS 131
APPENDIX D, MENU LIST WITH DEFAULT SETTINGS 133
APPENDIX E, MENU FLOWCHART 139
APPENDIX F, SERIAL COMMUNICATION COMMANDS 143
APPENDIX G, SYSTEM RESPONSE RATES 157
Model ACUA (AC Strain Gage Amplifier) Rates 157
Model LVDA (LVDT Amplifier) Rates 157
Model DCSA (DC Strain Gage Amplifier) Rates 157
Model DCVA (DC Voltage Amplifier) Rates 157
Model DCIA (DC Current Amplifier) Rates 157
Model CTUA (Frequency Input Module) Rates 158
Model UDCA (Encoder/Totalizer Module) Rates 159
CH3 Calculation Rates 160
Logic I/O Response Time 160
Analog Output Rates 160
APPENDIX H, SPECIFICATIONS 161
System Specifications 161
Model ACUA (AC Strain Gage Amplifier) Specifications 163
Model LVDA (LVDT Amplifier) Specifications 164
Model DCSA (DC Strain Gage Amplifier) Specifications 165
Model DCVA (DC Voltage Amplifier) Specifications 166
Model DCIA (DC Current Amplifier) Specifications 167
Model CTUA (Frequency Input Module) Specifications 168
Model UDCA (Encoder/Totalizer Module) Specifications 169
Option MA (Current Output) Specifications 170
Option MB (Current Output) Specifications 170
Option MC (Voltage Output) Specifications 171

GETTING STARTED

General Features

Option 12D1 allows 10 to 15VDC operation.

Analog output options:
MA: $4-20 \mathrm{~mA}$ or
$12 \pm 8 m A$
MB: $10 \pm 10 \mathrm{~mA}$
MC: $5 \pm 5 V$

The 700 Series instrument is a full featured Data Acquisition system with Test Control capabilities. It handles up to two hardware channels and one calculated channel. Many advanced features are provided without sacrificing ease of use.

- The 16 character by 2 line alphanumeric display provides easy to read menu selections.
- All manual adjustments have been eliminated. Calibration is performed automatically. Resolution is not compromised because there are no ranges to select. Resolution is 0.01% for any Full Scale value.
- Simplified keypad allows access to all channels, data types, and status without stopping a Test. Data is displayed in engineering units.
- There is no battery to change. System settings are stored in EEPROM memory.
- There is no filter to change or fan to replace. Low power technology is used eliminating the need for a fan.
- Data for each analog hardware channel is sampled at 2000 Hz using a 16 -bit A/D converter.
- Hardware channels have a 4-pole Bessel response low pass digital filter. In addition, analog hardware channels have a low pass Bessel response hardware antialias filter.
- Cross channel calculation is computed at 50 Hz rate.
- Standard instrument can be connected to 110 or 220VAC power without changes.
- Program 4 external logic inputs, 6 external logic outputs, and 6 internal Matrix signals to control your application.
- There are two analog outputs. Each can be assigned to any channel. You can select $\pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ Full Scale.
- Connect instrument to a computer via RS232, RS422, or RS485. 32 instruments can be connected using RS485.

Installation

- Unpack the instrument and verify that you received the following items.

One Series 700 instrument.
One power cord.
One 10ft RS232 cable (for connection to computer).
One M700 Windows Interface software.
One 15 pin male mating connector (for I/O).
One 9 pin male mating connector for each signal conditioning module purchased without a cable.

- For standard 700 Series instruments, connect power cord to the back of the instrument and to a power source that delivers $90-250 \mathrm{VAC}, 47-63 \mathrm{~Hz}$.

For 700 Series instruments with option 12D1, connect a power source that delivers 10 to 15VDC to banana jacks on the rear panel of the instrument.

- Connect transducers to CH 1 and CH 2 , as applicable. Installed signal conditioning modules and corresponding transducers (if purchased) are listed on the Series 700 Instrument Summary sheet in Section 2.0 (System Data) of the manual (blue binder). If cables were not purchased, see APPENDIX A for connectors pinouts and typical cables.
- Turn power ON. The power switch is located on the rear panel.
- If purchased with transducers, the 700 Series instrument is ready to use. Calibration was performed at the factory. Also, the instrument was set up as defined on the Series 700 Instrument Summary sheet in Section 2.0 (System Data) of the manual (blue binder).

If the 700 Series instrument was not purchased with transducers, see appropriate CHAN CALIBRATION chapter to calibrate instrument/transducer.

Power Up Display (Model Number Information)

After the power up message is gone, you can view model and version numbers by pressing ENTER key three times in quick succession.

Bad CH Calib
 Press ESC:

This message is displayed after the power up display if any of the channels have not been calibrated since the system was reset. See the appropriate CHAN CALIBRATION chapter(s).

When power is applied to the 700 Series instrument, the following message is shown for about four seconds.

Signal Conditioning Modules

Type	Model	Description
0	NONE	not installed
1	ACUA	AC Strain Gage
2	CTUA	Frequency Input
3	DCVA	DC Voltage

Type	Model	Description
4	LVDA	LVDT
5	UDCA	Encoder/Totalizer
6	DCIA	DC Current
8	DCSA	DC Strain Gage

The first line of the power up display shows model and version numbers. The model number is based on the type of signal conditioning modules installed as described in diagram above. Up to two modules (channels) can be installed. The third channel is a calculation and is present on all models.

The second line of the power up display shows the model names of installed signal conditioning modules. Preceding each model name is the corresponding channel number.

700 Series Model Number Examples

Model	CH1	CH2	CH3
701	AC Strain Gage Amp	none	
721	AC Strain Gage Amp	Frequency Input Module	
728	DC Strain Gage Amp	Frequency Input Module	Calculation
733	DC Voltage Amp	DC Voltage Amp	
784	LVDT Amp	DC Strain Gage Amp	
751	AC Strain Gage	Encoder/Totalizer Module	
766	DC Current Amp	DC Current Amp	

Rear Panel

Front Panel

Use MENU key to set up instrument.

- Scroll through selections using Cursor keys.
- To edit entry, press ENTER key. Entry flashes.
- Use Cursor keys to select.
- Press ENTER key to accept or ESC key to cancel.
- Press MENU key to exit menu.

Other useful key combinations:

- Press ENTER \& UP keys for positive test signal(s).
- Press ENTER \& DOWN keys for negative test signal(s).
- Press ENTER key three times in quick succession to view model and version numbers.

See ENTER Key later in this chapter.

Press VIEW key for desired view.

- 2 Channel
- Limit Status
- I/O Status
- 1 Channel

MENU Key

You cannot enter the menu when a Test is running.

Use MENU key to enter and exit the menu. To learn how to navigate the menu and modify selections, see MENU BASICS.

You can prevent unauthorized entry to the menu with a password. To enable or disable password protection, see Password Enable/Disable Jumper in APPENDIX B.

To view all menu items, see the menu flowchart in APPENDIX E.

VIEW Key

When the system is not in the menu, the data screen is displayed. Press VIEW key to change the data screen between 2 Channel, 1 Channel, Limit Status, and I/O Status views.

You can scroll through the channels using the UP/DOWN keys.

$3128.0 \mathrm{LE}-\mathrm{IN} \mathrm{H}^{\mathrm{C}}$
data types using the LEFT/RIGHT keys.

Status Indicators

- True (ON)
- False (OFF)
- Inactive

You can define the view, data type, and channels displayed on power up. See SYSTEM OPTIONS.

The 2 Channel view shows two channels - one on each of the two lines of the display.

The 1 Channel view shows one channel on the first line of the display. The second line of the display is blank.

The Limit Status view shows one channel on the first line of the display, and limit status of all channels on the second line. When limit checking is not performed, the inactive status indicator is used instead of the True and False status indicators.

The I/O Status view shows one channel on the first line of the display, and status of the four logic inputs and six logic outputs on the second line. The status indicators for logic inputs and outputs always reflect the state of the external signals (True $=\mathrm{ON}=0 \mathrm{~V}$; False $=\mathrm{OFF}=5 \mathrm{~V}$). Logic outputs are always OFF when a Test is not running.

TEST Key

3045.0 LE-IN 日 2068.0 RFM E

When Test is running, channel numbers are displayed as reversed numbers.

During a Test you can change the data screen view, channels displayed, and/or the data type without affecting the test.

To automatically run a Test when power is applied, see Power Up in SYSTEM OPTIONS.

Use TEST key to start or stop a Test. Channel numbers are displayed as reversed numbers to indicate a Test is running. During a Test, limits are checked (if enabled), Max and Min data are updated (if enabled), and Logic I/O is enabled.

Limit checking is only done during a Test. The instrument can be set up to check limits continuously for all channels during a Test. Or, limit checking of individual channels can be controlled by the Logic I/O. See Check Limits in SYSTEM OPTIONS. You can choose from Current data, Max data, Min data, Spread data, or Held data for each channel as the data to be limit checked. See Limit Type in CHAN SETTINGS. Normally, the backlight flashes when any limit is violated. To disabled this feature for a channel, see Limit Alarm in CHAN SETTINGS.

Similarly, Max/Min updating is only done during a Test. The instrument can be set up to update Max/Mins continuously for all channels during a Test. Or, Max/Min updating of individual channels can be controlled by the Logic I/O. See Do Max/Mins in SYSTEM OPTIONS. For each channel, Filtered or Raw data can be used for determining Max/Mins. See Max/Min Type in CHAN SETTINGS.

TARE Key

TARE key is active whether Test is running or not.

Press TARE key to tare enabled channels to 0 . Channels can be disabled from responding to TARE key. See TARE Key in CHAN SETTINGS. During a Test, Logic I/O can also tare channels. The Tare value is the value (when Tare operation occurred) required to force the current data to 0 . It is subtracted from new readings until another Tare or Clear Tare operation. To view Tare values, see Cursor Keys later in this chapter. Tare values are cleared on power up, when RESET key (if enabled) is pressed, via Logic I/O during a Test, and when a channel is calibrated.

HOLD Key

HOLD key is active whether Test is running or not.

Limit checking can be performed on Held data.

ESC/RESET Key

Cursor Keys

Spread $=$ Max - Min

ESC/RESET key has two functions. In the menu it cancels a selection. See MENU BASICS. In the data screen it clears Tare values of enabled channels (see RESET Key - Clear Tare in CHAN SETTINGS), it clears Held data and Latched Limits of all channels, it resets Max/Min data of all channels, it resets State Machine to State1, and it resets counters of enabled Model UDCA modules (see RESET Key - Reset UDCA Counter in CHAN SETTINGS).
Press HOLD key to take a snap shot of all channels. Each snap shot overwrites the previous. During a Test, Logic I/O can also be used to take a snap shot. To view Held data, see Cursor Keys later in this chapter. Held data is cleared on power up, when RESET key is pressed, and via Logic I/O during a Test.

In the menu, Cursor keys are used to scroll through the menu. When editing an entry, Cursor keys are used to choose a setting. For more details see MENU BASICS.

In the data screen, UP/DOWN keys are used to scroll through the channels. LEFT/RIGHT keys are used to view different data types. To indicate the type of data currently displayed, an icon is displayed to the left of the channel number.

ENTER Key

In data screen with Test not running: ENTER \& UP keys for + test signal(s). ENTER \& DOWN keys for - test signal(s).

In the menu, ENTER key is used to initiate editing a selection, to accept an entry, and to carry out a command. For more details see MENU BASICS.

In the data screen (with Test not running), ENTER key is used in combination with UP (or DOWN) key to activate test signal(s) for hardware channels. While pressing ENTER key, press UP key for positive test signal(s). Release keys to remove test signal(s). For negative test signal(s) use DOWN key instead of UP key. Test signals applied depend on the signal conditioning module. See Test Signals in appropriate CHAN CALIBRATION chapter.

Also, in the data screen, ENTER key is used to display model and version numbers of the 700 Series instrument. Press ENTER key three times in quick succession.

MENU BASICS

The menu flowchart is shown in APPENDIX E.

You cannot enter the menu when a Test is running.

The menu can be password protected. See Password Enable/Disable Jumper in APPENDIX B.

CH1 Set.tings

CH1 flashes. Select a channel using LEFT/RIGHT keys.

This chapter discusses general editing procedures for selections in the menu. After reading this chapter you should know how to navigate the menu and modify selections. Subsequent chapters describe the definitions of the menu selections and special instructions, if any, unique for that selection.

When navigating the menu, if you press an invalid key or scroll to either end of the menu, the backlight flashes. If you scrolled too far right, then press the LEFT key, and visa versa.

- Enter menu by pressing MENU key.

If password is enabled, Enter password is displayed with first character of the three character password entry flashing.

Use UP/DOWN keys to change flashing character. Use LEFT/RIGHT keys to move the cursor. Press ENTER key when done.

- CHAN Settings is displayed.
- Use RIGHT/LEFT keys to choose from:

CHAN Settings
CHAN Calibration
System Options
Logic I/O
Analog Outputs
COM Options

- Then, press DOWN key. More info may be requested as applicable. See following.

For CHAN Settings and CHAN Calibration, a channel number is requested. Select a channel using LEFT/RIGHT keys. Then, press DOWN key.

For Logic I/O, a channel number or SYS (for system) is requested. Select a channel or SYS using the LEFT/RIGHT keys. Then, press DOWN key.

For System Options, Analog Outputs, and COM Options, no further info is requested.

To quickly jump to another channel at a menu selection, press VIEW key. This is much quicker than going back up the menu, changing channels and going back down to that selection. Not all menu selections allow

The following actions will trigger adjustment of analog outputs when exiting menu.

- Calibrating CH1 and/or CH2.
- Changing channel assigned to either analog output.
- Clearing memory ladjustment occurs next time you exit menu).

Filter 2061 Hz

Second line shows current setting of 200 Hz for CH 1 filter. You are at the bottom of the menu.

Limits CH1

Second line is blank so you can go down further into the menu for more items.
menu fore itans.
channel jumping.

- First selection of that menu is displayed. The first line of the display shows the name of the selection along with the channel number, if applicable, on the right. If the second line shows the current setting for that selection then you are at the bottom of the menu. If the second line is blank then you can go down to another menu level with more choices.
- To edit a selection, press ENTER key. Current setting flashes. There are two types of selections.

For selections where the whole entry flashes, use UP/DOWN keys to choose from a list of choices.

For selections where only one character flashes (cursor), enter a name or numeric value, as required.

Use UP/DOWN keys to change flashing character.

Use LEFT/RIGHT keys to move the cursor.

Press VIEW key to change the character at the cursor from uppercase to lowercase, and visa versa.

To move the decimal point in numeric values, first select it using LEFT/RIGHT keys, then move it using UP/DOWN keys.

- When you are finished editing a selection press ENTER key to accept or ESC key to cancel. The flashing stops. If ENTER key was pressed the new setting is displayed. If ESC key was pressed the old setting is displayed. You are back on the original selection and can continue navigating the menu using Cursor keys.
- When you are finished making changes, press MENU key to exit the menu and return to the data screen.

When exiting the menu, the system automatically adjusts analog outputs, if necessary. The messages, Please wait... Adjusting ANA1, followed by Please wait... Adjusting ANA2, are displayed. Typically, the adjustments take 5 to 15 seconds, but could take as long as 30 seconds.

CHAN SETTINGS

To learn how to navigate the menu and modify selections, see MENU BASICS.

The CHAN Settings menu contains general items that are selected on a per channel basis. Use RIGHT/LEFT keys to choose from the following selections. To go into the Limits menu, press DOWN key when Limits is displayed.

Filter Limits	
LO Limit	
LO Hyster	(LO Hysteresis)
LO Latch	
HI Limit	
HI Hyster	(HI Hysteresis)
HI Latch	
Limit Mode	
Limit Type	
Limit Alarm	
Units	
Display Res.	(Display Resolution)
TARE Key	
RESET Key	(for Clear Tare action)
Max/Min Type ${ }^{*}$	
RESET Key**	(for Reset UDCA Counter action)

Filter

Default setting for Filter is 1 Hz .

Filter does not apply to CH3 calculation.

Select a cutoff frequency from 0.1 to 200 Hz (in 1-2-5 steps). For Model CTUA (Frequency Input Module) and Model UDCA (Encoder/Totalizer Module), the 200 Hz setting is replaced with None (no filter). Nominal attenuation of 3 dB is provided at the cutoff frequency. Lower cutoff frequencies provide more stable data. Higher cutoff frequencies provide faster response. For filter step response, see APPENDIX G.

The filter is a 4 pole Bessel response low pass digital filter. In addition, analog hardware channels have a 200 Hz low pass Bessel response hardware antialias filter.

For each analog output, there is a 100 Hz 5 pole Bessel response low pass hardware filter. The hardware channel's digital filter (described above) and the analog output filter both effect the analog output. But, the analog output filter does not effect the data read from the input channel. For example, if the digital
filter of CH 1 is 1 Hz , the analog output response is 1 Hz . The 100 Hz analog output filter has little effect. If the digital filter of CH 1 is 200 Hz , the analog output response is 100 Hz (the effect of the analog output filter).

Limits

Limits are checked during a Test only. They are checked at 1000 Hz for each hardware channel and 50 Hz for CH3 calculation.

Default value for LO Limit is -10000 .

Default value for

 LO Hysteresis is 0 .There is one HI limit and one LO limit for each channel. When Limits is displayed there is no entry on the second line. So, press DOWN key to go into the Limits menu for more items. The first selection of the Limits menu is displayed. Use RIGHT/LEFT keys to choose from:

LO Limit
LO Hyster (LO Hysteresis)
LO Latch
HI Limit
HI Hyster (HI Hysteresis)
HI Latch
Limit Mode
Limit Type
Limit Alarm

LO Limit

Enter value that when data drops below it, the LO limit is violated. The type of data (Current Data, Max Data, Min Data, Spread Data, or Held Data) used to compare to the LO Limit can be selected. See Limit Type later in this chapter.

Limit checking is only done during a Test. The instrument can be set up to check limits continuously for all channels during a Test. Or, limit checking of individual channels can be controlled by Logic I/O during a Test. See Check Limits in SYSTEM OPTIONS.

LO Hysteresis

Enter offset value above LO Limit which the data must reach or go above to release the LO Limit violation. Let's assume the LO Limit is 5000 and the LO Hysteresis is 10 . When data goes below 5000, the LO Limit is violated until the data returns to 5010 or higher. Hysteresis is used to prevent LO Limit signal from oscillating ON and OFF when data is near the LO Limit.

Only positive hysteresis numbers are allowed. By definition, latched mode disables hysteresis.

LO Hysteresis is also used to determine the status of the At Min output event. See At Min in LOGIC I/O.

LO Latch

Default setting for LO Latch is OFF.

In addition to HI and LO limit violations, the 700 Series has an IN Limit signal. When data is within the LO and HI limits, IN Limit is true, unless the data is within the hysteresis band of a limit that was violated, in which case, IN Limit is false. For latched limits, the hysteresis band is zero because hysteresis is disabled. IN Limit is never latched. So, if both HI and LO limits are latched and data exceeded both and then returned within limits, all three signals will be ON.

IN Limit is viewed on the Limit Status view and is available for Logic I/O control.

Default value for HI Limit is 10000 .

Default value for HI Hysteresis is 0 .

Select $O N$ to latch LO limit violations. A LO Limit violation remains true until it is cleared even if data returns above LO Limit. By definition, hysteresis is disabled. Latched limits are cleared on power up, when RESET key is pressed, when Test is started, and via Logic I/O during a Test.

Select OFF to unlatch LO limit violations. LO Limit violation is true when data goes below LO Limit and is false when data returns above LO Limit (including LO Hysteresis).

HI Limit

Enter value that when exceeded will generate a HI Limit violation. The type of data (Current Data, Max Data, Min Data, Spread Data, or Held Data) used to compare to the HI Limit can be selected. See Limit Type later in this chapter.

Limit checking is only done during a Test. The instrument can be set up to check limits continuously for all channels during a Test. Or, limit checking of individual channels can be controlled by Logic I/O during a Test. See Check Limits in SYSTEM OPTIONS.

HI Hysteresis

Enter offset value below HI Limit which the data must drop to or below to release the HI Limit violation. Let's assume the HI Limit is 10000 and the HI Hysteresis is 10 . When data goes above 10000, the HI Limit is violated until the data drops to 9990 or lower. Hysteresis is used to prevent HI Limit signal from oscillating ON and OFF when data is near the HI Limit.

Only positive hysteresis numbers are allowed. By definition, latch mode disables hysteresis.

HI Hysteresis is also used to determine the status of the At Max output event. See At Max in LOGIC I/O.

Default setting for HI Latch is OFF.

Default setting for Limit Mode is Signed.

If HI Hysteresis is too small, HI Limit may oscillate true and false when data is near HI Limit value. Similarly, if LO Hysteresis is too small, LO Limit may oscillate true and false when data is near LO Limit value.

HI Latch

Select $O N$ to latch HI limit violations. A HI Limit violation remains true until it is cleared even if data returns below HI Limit. By definition, hysteresis is disabled. Latched limits are cleared on power up, when RESET key is pressed, when Test is started, and via Logic I/O during a Test.

Select OFF to unlatch HI limit violations. HI Limit violation is true when data goes above HI Limit and is false when data returns below HI Limit (including HI Hysteresis).

Limit Mode

Select Signed or Absolute. The selected mode is common to both HI and LO limits.

In Signed mode, the signs (positive, negative) of data, HI Limit, and LO Limit are used to determine limit violations. For example, a HI Limit violation does not occur if data equals -2000 and HI Limit equals +1000 .

Signed Limits with Hysteresis Diagram

If HI Hysteresis is too small, HI Limit may oscillate true and false when data is near HI Limit value. Similarly, if LO Hysteresis is too small, LO Limit may oscillate true and false when data is near LO Limit value.

Default setting for Limit Type is Current Data.

Spread $=$ Max - Min

Default setting for Limit Alarm is Flash Backlight.

In Absolute mode, the absolute values of data, HI Limit, and LO Limit are used to determine limit violations. For example, a HI Limit violation occurs if data equals -2000 and HI Limit equals +1000 .

Absolute Limits with Hysteresis Diagram

Limit Type

Select the type of data used for limit checking. Choose from Current Data, Max Data, Min Data, Spread Data, or Held Data. Using Current Data, limit violations are determined on real-time data. But, if your test involves determining and classifying a peak or valley, then use Max Data or Min Data, respectively. Or, if your test grabs a data point at a precise moment and classifies it, use Held Data. Or, if your test determines a tolerance band for data whose absolute value is insignificant, and classifies it, use Spread Data.

Limit Alarm

Select Flash Backlight or None. If Flash Backlight is selected, then the backlight flashes for any limit violations (HI or LO) of the channel being set up. The backlight flashes even if Backlight (in System Options menu) is set to OFF.

You can see the limit status for all channels using the VIEW key.

See VIEW Key in GETTING STARTED. Also, limit violation events can be assigned to logic outputs and internal Matrix signals. See LOGIC I/O.

Units

Default setting for Units is all blanks.

Enter up to 5 characters for channel units. The unit name is displayed on the data screen along with actual data, channel number, and data type icon. When selecting a character using UP key, the characters sequence in the order shown in the following table. Press VIEW key to change the character at the cursor from uppercase to lowercase, and visa versa.

space										
A through Z										
\#	@	\&	.	\%	^	-	+	1	*	
0 through 9										

Display Resolution

Internal computations (such as, scaling data, limit checking, Max/Min detection, etc) use internal resolution. Display resolution is used only when data (Current, Max, Min, Spread, Held, etc) is displayed.

Default value for Display Resolution is best (smallest) value.

Choose amongst four display resolutions. The Internal resolution of the 700 Series is 0.01% of the user-entered Full Scale value. For easy viewing, displayed data is formatted with a fixed decimal point and a 1, 2, or 5 increment of the least significant digit (display resolution). The decimal point position and display resolution are determined from the Full Scale value. See following table for examples of display resolutions for Full Scale values from 1000 to 10000 . For Full Scale values not listed, just shift the decimal point appropriately. For example, for a Full Scale value of 150, the four choices for display resolution are $0.020,0.050,0.100$, and 0.200 .

Full Scale (FS)	Internal Resolution (FS $\div 10000)$	Four Choices for Display Resolution			
	Best		Worst		
1000 to 1414	0.1000 to 0.1414	0.10	0.20	0.50	1.00
1415 to 3162	0.1415 to 0.3162	0.20	0.50	1.00	2.00
3163 to 7071	0.3163 to 0.7071	0.50	1.00	2.00	5.00
7072 to 10000	0.7072 to 1.0000	1.0	2.0	5.0	10.0

TARE Key

Default setting for
TARE Key is Tare Enabled for CH 1 and CH2, and Tare Disabled for CH3 calculation.

Select Tare Enabled or Tare Disabled. The TARE key tares enabled channels to O. If you want a channel to be tared in response to the TARE key, select Tare Enabled. To prevent a channel from being tared in response to the TARE key, select Tare Disabled.

The Tare value is the value (when Tare operation occurred) required to force the current data to 0 . It is subtracted from new readings until another Tare or Clear Tare operation. To view Tare values, see Cursor Keys in GETTING STARTED.

Logic I/O can also tare channels. See LOGIC I/O. This selection has no affect on the Logic I/O. Tare values are cleared on power up, when RESET key (if enabled) is pressed, via Logic I/O during a Test, and when a channel is calibrated.

RESET Key (Clear Tare)

Default setting for RESET Key is Clear Tare.

Select Clear Tare or Don't Clear Tare. If you want a channel's Tare value to be cleared in response to the RESET key, select Clear Tare. To leave it intact, select Don't Clear Tare. The RESET key clears Tare values of enabled channels, it clears Held data and Latched Limits of all channels, it resets Max/Min data of all channels, it resets State Machine to State1, and it resets counters of enabled Model UDCA modules.

Logic I/O can also clear a channel's Tare value. See LOGIC I/O. This selection has no affect on the Logic I/O.

Select Filtered Data or Raw Data. When Filtered Data is selected, Max and Min data are updated with filtered real-time data. See Filter earlier in this chapter. The digital filter is bypassed for Max/Min data when Raw Data is selected. In this case, fastest response is obtained for Max/Min data. The 200 Hz low pass Bessel response hardware anti-alias filter for analog hardware channels cannot be bypassed.

Max and Min data are updated during a Test only. They are updated at 2000 Hz for each hardware channel and 50 Hz for CH3 calculation. They are reset on power up, when RESET key is pressed, and via Logic I/O during a Test.

RESET Key (Reset UDCA Counter)

Default setting for RESET Key is Don't Reset Cntr.

Reset Key (Reset UDCA Counter) applies only for Model UDCA modules.

Select Don't Reset Cntr or Reset Counter. If you want the RESET key to reset the counter on a Model UDCA module, select Reset Counter. To disable the RESET key from resetting the counter, select Don't Reset Cntr. The RESET key clears Tare values of enabled channels, it clears Held data and Latched Limits of all channels, it resets Max/Min data of all channels, it resets State Machine to State1, and it resets counters of enabled Model UDCA modules.

The counter on a Model UDCA module is reset on power up, when RESET key (if enabled, as described above) is pressed, via an external Reset signal at the transducer connector (if enabled, see Reset Signal in CHAN CALIBRATION for Model UDCA), and via Logic I/O (see Reset Count in LOGIC I/O). So, if you are resetting the counter externally, then most likely you'll want the RESET key to be disabled.

CHAN CALIBRATION (MODEL ACUA)

To learn how to navigate the menu and modify selections, see MENU BASICS.

Xdcr \rightarrow Transducer

* Omitted when

Type of CAL is Shunt-Positive.
** Omitted when
Type of CAL is Load-Positive.

When you perform a calibration, internal adjustments are made automatically. If this is the first time a calibration is done on a given transducer, large adjustment changes may be required. So, for optimal accuracy, it is recommended that two calibrations are done.

The Model ACUA is an AC Strain Gage Amplifier that can handle any strain gage transducer that provides an output in the range, 0.5 to $5 \mathrm{mV} / \mathrm{V}$, directly wired or transformer coupled. The CHAN Calibration menu for Model ACUA allows you to define calibration mode and values, and actually perform a calibration based on these settings. No manual adjustments are necessary. Selections in the CHAN Calibration menu for Model ACUA depend on the Type of CAL setting (Shunt or Load) as shown below. There are two types of Shunt calibrations, ShuntPos/Neg and Shunt-Positive, and two types of Load calibrations, Load-Pos/Neg and Load-Positive. Use RIGHT/LEFT keys to choose from the following selections.

For Shunt Calibrations
Type of CAL
Full Scale
Zero Value
+CAL Value ${ }^{*}$
-CAL Value*
To CAL Xdcr

To do a Shunt calibration,
Select Type of CAL. Enter Full Scale, Zero Value, +CAL Value, -CAL Value.* Perform To CAL Xdcr.

To do a Load calibration,
Select Type of CAL. Enter Full Scale, Zero Value, +Load Value, -Load Value.** Perform To Zero Xdcr. Perform To do +CAL. Perform To do -CAL.**

If any selections in the CHAN Calibration menu are changed, you must perform the calibration commands, To CAL Xdcr for Shunt calibrations, To Zero Xdcr and To do +CAL for Load Calibrations. Otherwise, when leaving the CHAN Calibration menu, the message, Not Calibrated Undo Changes OK?, appears. ENTER key will undo the changes. ESC key keeps you in the CHAN Calibration menu with changes intact. This allows you to perform the calibration commands and then leave menu. This feature assures that when you enter the CHAN Calibration menu,
the channel was last adjusted using the current selections. The To do -CAL calibration command is not required. If it is not performed, negative data is scaled the same as positive data.

Type of CAL

Default setting for Type of CAL is Shunt-Pos/Neg.

When doing a Shunt calibration, use Shunt-Positive when you are not interested in negative data.

When doing a Load calibration, use Load-Positive for transducers with small symmetry error or if you are not interested in negative data.

Select Shunt-Pos/Neg, Shunt-Positive, Load-Pos/Neg, or LoadPositive based on the calibration you are doing.

Use one of the Shunt calibration selections when you cannot load the transducer to a known value. Instead, the CAL resistor on the Model ACUA, simulates a known load. A CAL value (in engineering units) associated with this CAL resistor is required. When a transducer is purchased with the system, the proper CAL resistor is installed. Otherwise, a $60 \mathrm{k} \Omega \mathrm{CAL}$ resistor is provided. Refer to the transducer calibration sheet for the CAL resistor value. $\pm 0.02 \%, \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistors are recommended. To install or change the CAL resistor, see CAL Resistor Installation (Models ACUA and DCSA) in APPENDIX B.

For Shunt-Pos/Neg, the CAL resistor simulates both a positive and negative load.

For Shunt-Positive, the CAL resistor simulates a positive load only, and negative data is scaled the same as positive data.

Use one of the Load calibration selections when you can physically load the transducer to known values for calibration. The magnitude of the applied loads, preferably, should be 75\% to 100% of Full Scale. For Load calibrations, the CAL Resistor is not used for calibration.

For Load-Pos/Neg, you must apply both a positive and negative load to the transducer during calibration. The amplifier is adjusted based on these loads. Using both loads allows the system to correct any symmetry error of the transducer.

For Load-Positive, only a positive load is required for calibration. The negative data is scaled the same as positive data.

Full Scale

Default value for Full Scale is 10000.

Enter the Full Scale (in engineering units) of the transducer connected to this channel. This can be obtained from the transducer calibration sheet.

The Full Scale of this channel is used to:
determine scaling of displayed data in engineering units,
fix the position of the decimal point in displayed data,
determine selections for display resolution,
and, set the scaling of any analog output assigned to this channel.

The overrange capability for the Model ACUA is 50% of Full Scale. So, data for this channel can be as large as 1.5 times Full Scale, otherwise OVERLOAD is displayed.

Zero Value

Default value for Zero Value is 0 .

For Shunt calibrations, enter the value (in engineering units) representing an unloaded transducer.

For Load calibrations, enter the value (in engineering units) equivalent to the physical load (if any) present during zero calibration. This may be a known load that cannot easily be removed.

Typically, Zero Value is 0.

+CAL Value | +Load Value

Default value for $+C A L$ Value and +Load Value is 7500 .

For Shunt calibrations, +CAL Value is displayed. Enter the + Equivalent Calibration value (in engineering units) from the transducer calibration sheet. This is the value obtained when the CAL resistor is shunted across the bridge (on transducer) to simulate a known positive load.

For Load calibrations, +Load Value is displayed. Enter the value (in engineering units) of the physical load that will be applied during positive calibration. The closer this value is to Full Scale the better. Typical values are from 75% to 100% of Full Scale.

-CAL Value | -Load Value

Default value for -CAL Value and -Load Value is -7500 .

This entry is omitted for Shunt-Positive and Load-Positive calibrations. Negative data is scaled the same as positive data.

For a Shunt-Pos/Neg calibration, -CAL Value is displayed. Enter the -Equivalent Calibration value (in engineering units) from the transducer calibration sheet. This is the value obtained when the CAL resistor is shunted across the bridge (on transducer) to simulate a known negative load.

For a Load-Pos/Neg calibration, -Load Value is displayed. Enter the value (in engineering units) of the physical load that will be applied during negative calibration. The closer this value is to negative Full Scale the better. Typical values are from 75% to 100% of negative Full Scale.

When the +CAL Value or +Load Value is entered, the -CAL Value or -Load Value, respectively, is automatically updated to the same value, except negative. This is only a shortcut, and the -CAL Value or -Load Value can be overwritten.

To CAL Transducer (Shunt Calibrations)

For Shunt calibrations a CAL resistor is used to simulate a load. The CAL resistor is automatically switched and both zero and gain are adjusted without user intervention. The transducer must be connected to the 700 Series instrument and it must be unloaded during the calibration.

Character to right of Adj indicates operation being done.
O for zero adjustment

+ for gain adjustment
- for minus correction

For zero/null range and input sensitivity, see APPENDIX H.

When Type of CAL is Shunt-Pos/Neg or Shunt-Positive, one of the selections in the CHAN Calibration menu is To CAL Xdcr. This command calibrates the transducer/amplifier using a CAL resistor to simulate a load. For Shunt-Pos/Neg, the CAL resistor simulates both a positive and negative load. See Type of CAL earlier in this chapter. For Shunt-Positive, the CAL resistor simulates a positive load only, and negative data is scaled the same as positive data. To calibrate, follow the steps below.

To CHL Xder CH1 To initiate calibration, press ENTER Froes ElUTER

Please wait EH1 0.0 Ad. 0

CHÄ Calibration
key.

Unload the transducer, then press ENTER key. Current data is shown.

Zero and gain are being adjusted.
Calibration is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Return to top of CHAN Calibration menu.

To Zero Transducer (Load Calibrations)

The transducer must be connected to the 700 Series instrument during a calibration.

When Type of CAL is Load-Pos/Neg or Load-Positive, one of the selections in the CHAN Calibration menu is To Zero Xdcr. This command performs the zero adjustment for the transducer/amplifier. To adjust zero, follow the steps below.

To Zero Xder. CHI To initiate adjustment, press ENTER Press EHTER key.

Flesse wat. CH
Zero Done ok? ${ }^{\mathrm{CH}}$
To do +CAL CH1
Press ENTER

Unload the transducer, then press ENTER key. Current data is shown.

Zero is being adjusted.

Adjustment is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Go to next menu selection.

To do +CAL (Load Calibrations)

The transducer must be connected to the 700 Series instrument during a calibration.

When Type of CAL is Load-Pos/Neg or Load-Positive, one of the selections in the CHAN Calibration menu is To do +CAL. This command performs the gain adjustment for the transducer/amplifier. To adjust gain, follow the steps below.
To do +CAL CH 1
Press EHTER
Logd Yder +CH
$72 \mathrm{CH}, \mathrm{OK}$

Please wait CH1

 $75010.0 \mathrm{Ad} . \mathrm{j}+$+CH Done $\mathrm{CK} \mathrm{Cl}^{\mathrm{CH}}$

To do -CAL CH 1
Press ENTER

To initiate adjustment, press ENTER key.

Apply load corresponding to +Load Value to the transducer, then press ENTER key. Current data is shown.

Gain is being adjusted.

Adjustment is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Go to next menu selection.

To do -CAL (Load Calibrations)

For Load-Positive calibrations, this selection is omitted and the negative data is scaled the same as positive data.

The transducer must be connected to the 700 Series instrument during a calibration.

Test Signals

In data screen with Test not running: ENTER \& UP keys for + test signal(s). ENTER \& DOWN keys for - test signal(s).

If you performed a Load calibration, you could invoke the test signals to determine the calibration values for future Shunt calibrations.

When Type of CAL is Load-Pos/Neg, one of the selections in the CHAN Calibration menu is To do -CAL. This command corrects any symmetry error of the transducer by scaling negative data. Gain is not adjusted. To scale negative data, follow the steps below.

CH1	To initiate adjustment, press ENTER key.
Apply load corresponding to - Load	
Value to the transducer, then press	
ENTER key. Current data is shown	

key.

Apply load corresponding to -Load Value to the transducer, then press ENTER key. Current data is shown. Negative data is being scaled.
-CAL is done. Press ENTER key to accept, or ESC key to cancel and return to previous setting. menu.

CHAN CALIBRATION (MODEL LVDA)

To learn how to navigate the menu and modify selections, see MENU BASICS.

* Omitted when Type of CAL is Load-Positive.

When you perform a calibration, internal adjustments are made automatically. If this is the first time a calibration is done on a given transducer, large adjustment changes may be required. So, for optimal accuracy, it is recommended that two calibrations are done.

The Model LVDA is an AC Amplifier that can handle an AC operated LVDT displacement transducer that provides an output in the range, 100 to $1000 \mathrm{mV} / \mathrm{V}$. The CHAN Calibration menu for Model LVDA allows you to define calibration mode and values, and actually perform a calibration based on these settings. No manual adjustments are necessary. There are two types of calibrations, Load-Pos/Neg and Load-Positive. Both, require zero and positive calibrations. In addition, Load-Pos/Neg includes a negative calibration. Use RIGHT/LEFT keys to choose from the following selections.

```
EXC Freq. (Excitation Frequency)
Type of CAL
Full Scale
Zero Point
+CAL Point
-CAL Point*
To Zero LVDT
To do +CAL
To do -CAL
```

To do a calibration,
Select EXC Freq.
Select Type of CAL.
Enter Full Scale, Zero Point, +CAL Point, -CAL Point.*
Perform To Zero LVDT.
Perform To do +CAL.
Perform To do -CAL.*
If any selections in the CHAN Calibration menu are changed, you must perform the calibration commands, To Zero LVDT and To do +CAL. Otherwise, when leaving the CHAN Calibration menu, the message, Not Calibrated Undo Changes OK?, appears. ENTER key will undo the changes. ESC key keeps you in the CHAN Calibration menu with changes intact. This allows you to perform the calibration commands and then leave menu. This feature assures that when you enter the CHAN Calibration menu, the channel was last adjusted using the current selections. The To do -CAL calibration command is not required. If it is not performed, negative data is scaled the same as positive data.

The solution to the right provides best accuracy because zero calibration is done at LVDT electrical zero and Zero Point is Omm. See note in Zero Point section, later.

The solution to the right using CH3 calculation provides best accuracy because zero calibration is done at LVDT electrical zero and Zero Point is Omm. See note in Zero Point section, later.

The solution to the right is not recommended because of LVDT symmetry error. Zero calibration is not done at LVDT electrical zero. See note in Zero Point section, later.

Example:

Normally you would calibrate a $\pm 5 \mathrm{~mm}$ LVDT as follows. Data will go from -5 to 0 to +5 mm .

Set Type of CAL to Load-Pos/Neg.
Enter the following.
Full Scale $=5 \mathrm{~mm}$
Zero Point $=0 \mathrm{~mm}$

+ CAL Point $=5 \mathrm{~mm}$
-CAL Point $=-5 \mathrm{~mm}$
Execute To Zero LVDT with LVDT at electrical zero.
Execute To do +CAL with LVDT displaced 5 mm from LVDT electrical zero.
Execute To do -CAL with LVDT displaced -5 mm from LVDT electrical zero.

If you want the LVDT to provide positive data only while using the full range (positive and negative) of the LVDT, then use CH3 calculation to add 5 mm to LVDT channel. As a result, CH 3 data will go from 0 to 10 mm . The resolution of the LVDT channel is preserved. For CH3 calculation, select User Defined and enter $1 A+$ as RPN string. This assumes channel 1 is LVDT channel. Change 1 to 2 if its channel 2. Also, enter 5 as Constant A. See CHAN CALIBRATION (CH3 CALCULATION).

To save the calculation at the cost of worst resolution and errors due to LVDT asymmetry (see note in Zero Point section, later), do the following. Data will go from 0 to 10 mm .

Set Type of CAL to Load-Positive.
Enter the following.
Full Scale $=10 \mathrm{~mm}$
Zero Point $=0 \mathrm{~mm}$
$+C A L$ Point $=10 \mathrm{~mm}$
Execute To Zero LVDT with LVDT displaced -5 mm from LVDT electrical zero.
Execute To do +CAL with LVDT displaced 5 mm from LVDT electrical zero.

Excitation Frequency

EXC Freq \(\rightarrow \begin{gathered}Excitation
Frequency\end{gathered}\)
Default setting for EXC Freq is 5 kHz .

For the entry, EXC Freq., select $2.5 \mathrm{kHz}, 3 \mathrm{kHz}, 5 \mathrm{kHz}$, or 10 kHz as the excitation frequency. The Model LVDA excites an LVDT transducer with a 2 Vrms sine wave with the frequency selected. An LVDT transducer is calibrated at a particular frequency. This frequency should be specified on the LVDT calibration sheet.

For best performance, choose this frequency. If the calibration sheet does not specify the excitation frequency, check the specification sheet. It should indicate a range of frequencies supported by the LVDT transducer. Pick an excitation frequency within this range.

Select Load-Pos/Neg or Load-Positive based on the calibration you are doing. You must be able to physically displace (load) the LVDT plunger to known values for calibration.

For Load-Pos/Neg, you must physically displace the LVDT plunger on both sides (positive and negative) of its electrical zero during calibration. The amplifier is adjusted based on these displacements. Using both sides allows the system to correct any symmetry error of the LVDT.

For Load-Positive, a positive LVDT plunger displacement is required for calibration. The negative data is scaled the same as positive data. Use Load-Positive for LVDTs with small symmetry error or if you are not interested in negative data.

Enter the Full Scale (in engineering units) of the LVDT connected to this channel. This can be obtained from the LVDT calibration sheet.

The Full Scale of this channel is used to:
determine scaling of displayed data in engineering units,
fix the position of the decimal point in displayed data,
determine selections for display resolution,
and, set the scaling of any analog output assigned to this channel.

The overrange capability for the Model LVDA is 50% of Full Scale. So, data for this channel can be as large as 1.5 times Full Scale, otherwise OVERLOAD is displayed.

Zero Point

Default value for Zero Point is 0 .

Enter the value (in engineering units) equivalent to the LVDT plunger displacement during zero calibration. For best accuracy, Zero Point should be 0 and the LVDT plunger should be at its electrical zero during zero calibration.

NOTE:

If Zero Point is non-zero and/or the LVDT plunger is not at its electrical zero during zero calibration, accuracy and non-linearity errors can result due to the symmetry error of the LVDT. Symmetry error is the difference of output for equal displacement on either side of the electrical zero. The output of the LVDT has different slopes on positive and negative sides of its electrical zero. The 700 Series instrument compensates for asymmetrical transducers by using different positive and negative multipliers (Load-Pos/Neg calibration). For this to be effective, zero electrical signal (from LVDT) must be 0 in units of the selected channel. One way to accomplish this is to set Zero Point to 0 and make sure the LVDT plunger is at its electrical zero during zero calibration.

+CAL Point

-CAL Point

Default value for -CAL Point is -7500.

This entry is omitted for Load-Positive calibrations. Negative data is scaled the same as positive data.

Enter the value (in engineering units) equivalent to the LVDT plunger displacement during positive calibration. The closer this value is to Full Scale the better. Typical values are from 75% to 100% of Full Scale.

Enter the value (in engineering units) equivalent to the LVDT plunger displacement during negative calibration. The closer this value is to negative Full Scale the better. Typical values are from 75% to 100% of negative Full Scale.

When the + CAL Point is entered, the -CAL Point is automatically updated to the same value, except negative. This is only a shortcut, and the -CAL Point can be overwritten.

To Zero LVDT

The LVDT must be connected to the 700 Series instrument during a calibration.

Data displayed at Set LVDT @ 0 prompt:

Data may vary a lot. Try to get it as close to O as possible. Data is not scaled to any particular units and gain is set high.

Data may vary slightly. This is due to a significant change in Full Scale. Finish full calibration and then repeat it.

To do +CAL

The LVDT must be connected to the 700 Series instrument during a calibration.

For input sensitivity, see APPENDIX H.

This command performs the zero adjustment for the LVDT/amplifier. For best accuracy, the LVDT plunger should be at its electrical zero during the zero adjustment. If it is not, accuracy and non-linearity errors can result due to the symmetry error of the LVDT. See note in Zero Point section, earlier. To adjust zero, follow the steps below.

To Zerg LUDT EH1 To initiate adjustment, press ENTER Press EkTER

Set LVDT at electrical zero by moving plunger until data is near 0 . Then, press ENTER key. key.

Zero is being adjusted.

Adjustment is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Go to next menu selection.

This command performs the gain adjustment for the LVDT/amplifier. To adjust gain, follow the steps below.

To do +CAL EH1	To initiate adjustment, press ENTER key.
Frese ENTER	

Please wait EH1 750, 0 Ad.
 7506. $0 \times ?$

To do -CHL EH1
Press ENTER

Gain is being adjusted.

Adjustment is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Go to next menu selection.

To do -CAL

For Load-Positive calibrations, this selection is omitted and the negative data is scaled the same as positive data.

The LVDT must be connected to the 700 Series instrument during a calibration.

Test Signals

In data screen with Test not running: ENTER \& UP keys for + test signal(s). ENTER \& DOWN keys for - test signal(s).

This command corrects any symmetry error of the transducer by scaling negative data. See note in Zero Point section, earlier. Gain is not adjusted. To scale negative data, follow the steps below.

To - COHL EH1 To initiate adjustment, press ENTER Press ElTER

CHAN Calibration
key.

Displace LVDT plunger by amount equal to -CAL Point, then press ENTER key. Current data is shown.

Negative data is being scaled.
-CAL is done. Press ENTER key to accept, or ESC key to cancel and return to previous setting.

Return to top of CHAN Calibration menu.

You can verify the calibration of the LVDT/amplifier using internal test signals. In the data screen (with Test not running), ENTER key is used in combination with UP (or DOWN) key to activate test signal(s). While pressing ENTER key, press UP key for positive test signal(s). Release keys to remove test signal(s). For negative test signal(s) use DOWN key instead of UP key.

For the Model LVDA (LVDT Amplifier), the test signals are created by injecting a portion of the signal from the Sense inputs (which originates from the regulated Excitation outputs) simulating a positive or negative displacement. After a calibration, invoke the positive and negative test signals making sure the LVDT is connected and at 0 in units of the selected channel. Otherwise, any displacement would add to the simulated displacement. Record the displayed data. Then, at any time, you can verify the calibration by using the test signals again, and comparing the displayed data to what you recorded.

CHAN CALIBRATION (MODEL DCSA)

To learn how to navigate the menu and modify selections, see MENU BASICS.

Xdcr \rightarrow Transducer

* Omitted when Type of CAL is Shunt-Positive.
* O Omitted when

Type of CAL is Load-Positive.
*** Omitted when Type of CAL is $m V / V$-Positive.

When you perform a calibration, internal adjustments are made automatically. If this is the first time a calibration is done on a given transducer, large adjustment changes may be required. So, for optimal accuracy, it is recommended that two calibrations are done. This applies to Shunt and Load calibrations, not mV/V calibrations.

The Model DCSA is a DC Strain Gage Amplifier that can handle any directly wired strain gage transducer that provides an output in the range, 0.5 to $4.5 \mathrm{mV} / \mathrm{V}$. The CHAN Calibration menu for Model DCSA allows you to define calibration mode and values, and actually perform a calibration based on these settings. No manual adjustments are necessary. Selections in the CHAN Calibration menu for Model DCSA depend on the Type of CAL setting (Shunt, Load, or $m V / V$) as shown below. Each of these types are divided into two more types, Pos/Neg and Positive. For example, there are two Shunt calibrations, Shunt-Pos/Neg and Shunt-Positive. Use RIGHT/LEFT keys to choose from the following selections.

Shunt Calibrations	Load Calibrations	mV / V Calibrations
Type of CAL	Type of CAL	Type of CAL
Full Scale	Full Scale	Full Scale
Zero Value	Zero Value	
+CAL Value	+Load Value	$m V / V @+F S$
-CAL Value*	-Load Value**	$m V / V @-F S^{* * *}$
	To Zero Xdcr	
To CAL Xdcr	To do +CAL To do CAL**	To CAL Xdcr

To do a Shunt calibration,
Select Type of CAL. Enter Full Scale, Zero Value, +CAL Value, -CAL Value.* Perform To CAL Xdcr.

To do a Load calibration,
Select Type of CAL. Enter Full Scale, Zero Value, +Load Value, -Load Value.** Perform To Zero Xdcr. Perform To do +CAL. Perform To do -CAL.**

To do a mV/V calibration,
Select Type of CAL. Enter Full Scale, mV/V @ +FS, mV/V @ -FS.*** Perform To CAL Xdcr.

If any selections in the CHAN Calibration menu are changed, you must perform the calibration commands, To CAL Xdcr for Shunt and mV / V calibrations, To Zero Xdcr and To do +CAL for Load

Type of CAL

Default setting for Type of CAL is Shunt-Pos/Neg.

When doing a Shunt calibration, use Shunt-Positive when you are not interested in negative data.

When doing a Load calibration, use Load-Positive for transducers with small symmetry error or if you are not interested in negative data.
calibrations. Otherwise, when leaving the CHAN Calibration menu, the message, Not Calibrated Undo Changes OK?, appears. ENTER key will undo the changes. ESC key keeps you in the CHAN Calibration menu with changes intact. This allows you to perform the calibration commands and then leave menu. This feature assures that when you enter the CHAN Calibration menu, the channel was last adjusted using the current selections. The To do -CAL calibration command is not required. If it is not performed, negative data is scaled the same as positive data.

Select Shunt-Pos/Neg, Shunt-Positive, Load-Pos/Neg, LoadPositive, $m V / V$-Pos/Neg, or $m V / V$-Positive based on the calibration you are doing.

Use one of the Shunt (or $m V / V$, described later) calibration selections when you cannot load the transducer to a known value. Instead, the CAL resistor on the Model DCSA, simulates a known load. A CAL value (in engineering units) associated with this CAL resistor is required. When a transducer is purchased with the system, the proper CAL resistor is installed. Otherwise, a $60 \mathrm{k} \Omega$ CAL resistor is provided. Refer to the transducer calibration sheet for the CAL resistor value. $\pm 0.02 \%, \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistors are recommended. To install or change the CAL resistor, see CAL Resistor Installation (Models ACUA and DCSA) in APPENDIX B.

For Shunt-Pos/Neg, the CAL resistor simulates both a positive and negative load.

For Shunt-Positive, the CAL resistor simulates a positive load only, and negative data is scaled the same as positive data.

Use one of the Load calibration selections when you can physically load the transducer to known values for calibration. The magnitude of the applied loads, preferably, should be 75\% to 100% of Full Scale. For Load calibrations, the CAL Resistor is not used for calibration.

For Load-Pos/Neg, you must apply both a positive and negative load to the transducer during calibration. The amplifier is adjusted based on these loads. Using both loads allows the system to correct any symmetry error of the transducer.

For Load-Positive, only a positive load is required for
calibration. The negative data is scaled the same as positive data.

Use one of the $m V / V$ calibration selections when you cannot load the transducer to a known value and you know the mV / V output value of the transducer at Full Scale. The $m V / V$ calibration provides an absolute gain (span) adjustment (using an internal reference voltage) while compensating for any zero unbalance of the transducer. For $m V / V$ calibrations, the CAL Resistor is not used for calibration.

For $m V / V$-Pos/Neg, you must have the $m V / V$ output values for the transducer at both positive and negative Full Scale. The amplifier is adjusted based on these values. Using both values allows the system to correct any symmetry error of the transducer.

For $m V / V$-Positive, only the $m V / V$ output value for the transducer at positive Full Scale is required for calibration. The negative data is scaled the same as positive data.

Full Scale

Default value for Full Scale is 10000.

Enter the Full Scale (in engineering units) of the transducer connected to this channel. This can be obtained from the transducer calibration sheet.

The Full Scale of this channel is used to:
determine scaling of displayed data in engineering units,
fix the position of the decimal point in displayed data,
determine selections for display resolution,
and, set the scaling of any analog output assigned to this channel.

The overrange capability for the Model DCSA is 50\% of Full Scale. So, data for this channel can be as large as 1.5 times Full Scale, otherwise OVERLOAD is displayed.

Zero Value (Shunt and Load Calibrations)

Default value for Zero Value is 0 .

For Shunt calibrations, enter the value (in engineering units) representing an unloaded transducer.

For Load calibrations, enter the value (in engineering units) equivalent to the physical load (if any) present during zero calibration. This may be a known load that cannot easily be removed.

For $m V / V$ calibrations, this entry is omitted. The physical load (if any) present during calibration along with any transducer zero unbalance are calibrated to 0 (in engineering units).

Typically, Zero Value is 0 .

+CAL Value | +Load Value | mV/V @ +FS

Default value for + CAL Value, +Load Value, and $m V / V @+F S$ is 7500.

For Shunt calibrations, +CAL Value is displayed. Enter the +Equivalent Calibration value (in engineering units) from the transducer calibration sheet. This is the value obtained when the CAL resistor is shunted across the bridge (on transducer) to simulate a known positive load.

For Load calibrations, +Load Value is displayed. Enter the value (in engineering units) of the physical load that will be applied during positive calibration. The closer this value is to Full Scale the better. Typical values are from 75% to 100% of Full Scale.

For $m V / V$ calibrations, $m V / V @+F S$ is displayed. Enter the output (in mV / V 's) of the transducer at positive Full Scale. This can be obtained from the transducer calibration sheet.

-CAL Value | -Load Value | mV/V @ -FS

Default value for -CAL Value, -Load Value, and $m V / V$ @ -FS is -7500.

This entry is omitted for Shunt-Positive, Load-Positive, and $m V / V$-Positive calibrations. Negative data is scaled the same as positive data.

For a Shunt-Pos/Neg calibration, -CAL Value is displayed. Enter the -Equivalent Calibration value (in engineering units) from the transducer calibration sheet. This is the value obtained when the CAL resistor is shunted across the bridge (on transducer) to simulate a known negative load.

For a Load-Pos/Neg calibration, -Load Value is displayed. Enter the value (in engineering units) of the physical load that will be applied during negative calibration. The closer this value is to negative Full Scale the better. Typical values are from 75% to
100% of negative Full Scale.

For $m V / V$ calibrations, $m V / V @-F S$ is displayed. Enter the output (in mV / V 's) of the transducer at negative Full Scale. This can be obtained from the transducer calibration sheet.

When the +CAL Value, +Load Value, or $m V / V$ @ + FS is entered, the -CAL Value, -Load Value, or mV/V @-FS, respectively, is automatically updated to the same value, except negative. This is only a shortcut, and the -CAL Value, -Load Value, or $m V / V$ @ -FS can be overwritten.

To CAL Transducer (Shunt Calibrations)

For Shunt calibrations a CAL resistor is used to simulate a load. The CAL resistor is automatically switched and both zero and gain are adjusted without user intervention. The transducer must be connected to the 700 Series instrument and it must be unloaded during the calibration.

Character to right of
Adj indicates operation being done.
O for zero adjustment

+ for gain adjustment
- for minus correction

For zero range and input sensitivity, see APPENDIX H.

When Type of CAL is Shunt-Pos/Neg or Shunt-Positive, one of the selections in the CHAN Calibration menu is To CAL Xdcr. This command calibrates the transducer/amplifier using a CAL resistor to simulate a load. For Shunt-Pos/Neg, the CAL resistor simulates both a positive and negative load. See Type of CAL earlier in this chapter. For Shunt-Positive, the CAL resistor simulates a positive load only, and negative data is scaled the same as positive data. To calibrate, follow the steps below.

To CHL Xder CH1 To initiate calibration, press ENTER Prees ENTER

Please wait CHI Q. 0 Fd.
EAL Dorne CH

EHAN Calibration
key.

Unload the transducer, then press ENTER key. Current data is shown.

Zero and gain are being adjusted.
Calibration is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Return to top of CHAN Calibration menu.

To Zero Transducer (Load Calibrations)

The transducer must be connected to the 700 Series instrument during a calibration.

For zero range, see APPENDIX H .

When Type of CAL is Load-Pos/Neg or Load-Positive, one of the selections in the CHAN Calibration menu is To Zero Xdcr. This command performs the zero adjustment for the transducer/amplifier. To adjust zero, follow the steps below.

To Zerg Yder. CH1 To initiate adjustment, press ENTER Press EHTER

Urioad

Unload the transducer, then press ENTER key. Current data is shown.

Zero is being adjusted.

Adjustment is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Go to next menu selection.

To do +CAL (Load Calibrations)

The transducer must be connected to the 700 Series instrument during a calibration.

For input sensitivity, see APPENDIX H.

When Type of CAL is Load-Pos/Neg or Load-Positive, one of the selections in the CHAN Calibration menu is To do +CAL. This command performs the gain adjustment for the transducer/amplifier. To adjust gain, follow the steps below.

To do +CAL CH1 To initiate adjustment, press ENTER Press EHTER

Logd Xder + CH 7286.0 O ?

Flease wait CH1 $75010.0 \mathrm{Adj}+$

To do - CAL CH1
Press EHTER
key.

Apply load corresponding to +Load Value to the transducer, then press ENTER key. Current data is shown.

Gain is being adjusted.
Adjustment is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Go to next menu selection.

To do -CAL (Load Calibrations)

For Load-Positive calibrations, this selection is omitted and the negative data is scaled the same as positive data.

The transducer must be connected to the 700 Series instrument during a calibration.

When Type of CAL is Load-Pos/Neg, one of the selections in the CHAN Calibration menu is To do -CAL. This command corrects any symmetry error of the transducer by scaling negative data. Gain is not adjusted. To scale negative data, follow the steps below.

To - CoHL EH1 To initiate adjustment, press ENTER Press EHTER

Loge Yder - ${ }^{[\mathrm{CH} 1}$ - 7243.0 010?

Please wait chi

- 7500.0 Adj i
-CAL Done ${ }^{\text {CHI }}$
- 7506.0 0k?

CHAH Calibration
key.
Apply load corresponding to -Load Value to the transducer, then press ENTER key. Current data is shown.

Negative data is being scaled.
-CAL is done. Press ENTER key to accept, or ESC key to cancel and return to previous setting.

Return to top of CHAN Calibration menu.

To CAL Transducer (mV/V Calibrations)

The transducer must be connected to the 700 Series instrument and unloaded during a calibration.

Character to right of
Adj indicates operation being done.
O for zero adjustment

+ for gain adjustment
- for minus correction

For zero range and input sensitivity, see APPENDIX H .

Test Signals

In data screen with Test not running: ENTER \& UP keys for + test signal(s). ENTER \& DOWN keys for - test signal(s).

If you performed a Load calibration, you could invoke the test signals to determine the calibration values for future Shunt calibrations.

When Type of CAL is $m V / V$-Pos/Neg or $m V / V$-Positive, one of the selections in the CHAN Calibration menu is To CAL Xdcr. This command calibrates the transducer/amplifier using an internal reference voltage for an absolute gain (span) adjustment while compensating for any zero unbalance of the transducer. For $m V / V$-Pos/Neg, any symmetry error of the transducer is corrected by scaling negative data. See Type of CAL earlier in this chapter. For $m V / V$-Positive, negative data is scaled the same as positive data. To calibrate, follow the steps below.

To CHL Xder CH1 To initiate calibration, press ENTER Prees ElUTER

Plegse wait CH

CHAN Ealibration
key.

Unload the transducer, then press ENTER key. Current data is shown.

Zero and gain are being adjusted. Current data is not shown.

Calibration is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Return to top of CHAN Calibration menu.

You can verify the calibration of the transducer/amplifier using internal test signals. In the data screen (with Test not running), ENTER key is used in combination with UP (or DOWN) key to activate test signal(s). While pressing ENTER key, press UP key for positive test signal(s). Release keys to remove test signal(s). For negative test signal(s) use DOWN key instead of UP key.

For the Model DCSA (DC Strain Gage Amplifier), the test signals are created by shunting the internal CAL resistor (on the Model DCSA) across the bridge (on transducer) simulating a known positive or negative load. Make sure the transducer is connected and unloaded. Otherwise, the load would add to the simulated load. If no physical load is present on the transducer and the channel has been calibrated, displayed data should be same as +Equivalent Calibration value or -Equivalent Calibration value from the transducer calibration sheet.

CHAN CALIBRATION (MODEL DCVA)

To learn how to navigate the menu and modify selections, see MENU BASICS.

Xdcr \rightarrow Transducer

* Omitted when Type of CAL is Remote-Positive.
** Omitted when
Type of CAL is Load-Positive.

When you perform a calibration, internal adjustments are made automatically. If this is the first time a calibration is done on a given transducer, large adjustment changes may be required. So, for optimal accuracy, it is recommended that two calibrations are done.

The Model DCVA is a DC Voltage Amplifier that can handle any transducer that provides an output in the range, ± 1 to $\pm 10 \mathrm{VDC}$. The CHAN Calibration menu for Model DCVA allows you to define calibration mode and values, and actually perform a calibration based on these settings. No manual adjustments are necessary. Selections in the CHAN Calibration menu for Model DCVA depend on the Type of CAL setting (Remote or Load) as shown below. There are two types of Remote calibrations, Remote-Pos/Neg and Remote-Positive, and two types of Load calibrations, Load-Pos/Neg and Load-Positive. Use RIGHT/LEFT keys to choose from the following selections.

For Remote Calibrations
Type of CAL
Full Scale
Zero Value
+CAL Value
-CAL Value ${ }^{*}$

To CAL Xdcr

To do a Remote calibration,
Select Type of CAL. Enter Full Scale, Zero Value, +CAL Value, -CAL Value.* Perform To CAL Xdcr.

To do a Load calibration,
Select Type of CAL. Enter Full Scale, Zero Value, +Load Value, -Load Value.** Perform To Zero Xdcr. Perform To do +CAL. Perform To do -CAL.**

If any selections in the CHAN Calibration menu are changed, you must perform the calibration commands, To CAL Xdcr for Remote calibrations, To Zero Xdcr and To do +CAL for Load Calibrations. Otherwise, when leaving the CHAN Calibration menu, the message, Not Calibrated Undo Changes OK?, appears. ENTER key will undo the changes. ESC key keeps you in the CHAN Calibration menu with changes intact. This allows you to perform the calibration commands and then leave menu. This feature assures that when you enter the CHAN Calibration menu, the channel was last adjusted using the current selections. The

To do -CAL calibration command is not required. If it is not performed, negative data is scaled the same as positive data.

Type of CAL

Default setting for Type of CAL is Remote-Pos/Neg.

When doing a Remote calibration, use Remote-Positive when you are not interested in negative data or the transducer supports a remote positive calibration signal only.

If the transducer has CAL button(s) to activate simulated calibration signal(s), use one of the Load calibrations.

When doing a Load calibration, use Load-Positive for transducers with small symmetry error or if you are not interested in negative data.

Select Remote-Pos/Neg, Remote-Positive, Load-Pos/Neg, or Load-Positive based on the calibration you are doing.

Use one of the Remote calibration selections when you cannot load the transducer to a known value AND the transducer supports Remote calibration. A Remote calibration employs one or two relays (+CAL for positive operation, -CAL for negative operation, if applicable) on the Model DCVA to activate simulated calibration signal(s) at the transducer.

For Remote-Pos/Neg, both relays are used to simulate positive and negative loads.

For Remote-Positive, one relay output is used to simulate a positive load only, and negative data is scaled the same as positive data.

Use one of the Load calibration selections when you can physically load the transducer to known values for calibration. The magnitude of the applied loads, preferably, should be 75\% to 100% of Full Scale. For Load calibrations, the relays are not used for calibration.

For Load-Pos/Neg, you must apply both a positive and negative load to the transducer during calibration. The amplifier is adjusted based on these loads. Using both loads allows the system to correct any symmetry error of the transducer.

For Load-Positive, only a positive load is required for calibration. The negative data is scaled the same as positive data.

Full Scale

Default value for Full Scale is 10000.

Enter the Full Scale (in engineering units) of the transducer connected to this channel. This can be obtained from the transducer calibration sheet.

The Full Scale of this channel is used to:
determine scaling of displayed data in engineering units,
fix the position of the decimal point in displayed data,
determine selections for display resolution,
and, set the scaling of any analog output assigned to this channel.

The overrange capability for the Model DCVA is 50% of Full Scale. So, data for this channel can be as large as 1.5 times Full Scale, otherwise OVERLOAD is displayed.

Zero Value

Default value for Zero Value is 0 .

For Remote calibrations, enter the value (in engineering units) representing an unloaded transducer.

For Load calibrations, enter the value (in engineering units) equivalent to the physical load (if any) present during zero calibration. This may be a known load that cannot easily be removed.

Typically, Zero Value is 0.

+CAL Value | +Load Value

Default value for +CAL Value and +Load Value is 7500 .

For Remote calibrations, +CAL Value is displayed. Enter the + Equivalent Calibration value (in engineering units) from the transducer calibration sheet. This is the value obtained when the transducer simulates a known positive load in response to the +CAL relay on the Model DCVA.

For Load calibrations, +Load Value is displayed. Enter the value (in engineering units) of the physical load that will be applied during positive calibration. The closer this value is to Full Scale the better. Typical values are from 75% to 100% of Full Scale.

-CAL Value | -Load Value

Default value for -CAL Value and -Load Value is -7500 .

This entry is omitted for Remote-Positive and Load-Positive calibrations. Negative data is scaled the same as positive data.

For a Remote-Pos/Neg calibration, -CAL Value is displayed. Enter the -Equivalent Calibration value (in engineering units) from the transducer calibration sheet. This is the value obtained when the transducer simulates a known negative load in response to the -CAL relay on the Model DCVA.

For a Load-Pos/Neg calibration, -Load Value is displayed. Enter the value (in engineering units) of the physical load that will be applied during negative calibration. The closer this value is to negative Full Scale the better. Typical values are from 75% to 100% of negative Full Scale.

When the +CAL Value or +Load Value is entered, the -CAL Value or -Load Value, respectively, is automatically updated to the same value, except negative. This is only a shortcut, and the -CAL Value or -Load Value can be overwritten.

To CAL Transducer (Remote Calibrations)

For Remote calibrations, relay(s) are automatically activated and both zero and gain are adjusted without user intervention. The transducer must support Remote calibration, it must be connected to the 700 Series instrument and it must be unloaded during the calibration.

Character to right of Adj indicates operation being done.
O for zero adjustment

+ for gain adjustment
- for minus correction

For zero range and input sensitivity, see APPENDIX H.

When Type of CAL is Remote-Pos/Neg or Remote-Positive, one of the selections in the CHAN Calibration menu is To CAL Xdcr. This command calibrates the transducer/amplifier using relay(s) to activate simulated calibration signal(s) at the transducer. For Remote-Pos/Neg, two relays, +CAL and -CAL, are used to simulate positive and negative loads, respectively. For RemotePositive, one relay, +CAL, is used to simulate a positive load, and negative data is scaled the same as positive data. To calibrate, follow the steps below.

To CHL Xder EH1 To initiate calibration, press ENTER Fress ElUTER

Flease wait CH1日. 0 Ad. 1

CHAF Calibration
key.

Unload the transducer, then press ENTER key. Current data is shown.

Zero and gain are being adjusted.

Calibration is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Return to top of CHAN Calibration menu.

To Zero Transducer (Load Calibrations)

The transducer must be connected to the 700 Series instrument during a calibration.

When Type of CAL is Load-Pos/Neg or Load-Positive, one of the selections in the CHAN Calibration menu is To Zero Xdcr. This command performs the zero adjustment for the transducer/amplifier. To adjust zero, follow the steps below.

To Zero Xder. CHI To initiate adjustment, press ENTER Press EHTER key.

Flease wit. CH
Zero Done ok? CH
To do +CAL CH1
Fress ENTER

For zero range, see APPENDIX H.

To do +CAL (Load Calibrations)

The transducer must be connected to the 700 Series instrument during a calibration.

When Type of CAL is Load-Pos/Neg or Load-Positive, one of the selections in the CHAN Calibration menu is To do +CAL. This command performs the gain adjustment for the transducer/amplifier. To adjust gain, follow the steps below.
To do +CAL CH 1
Press EHTER
Logd Yder +CH
$72 \mathrm{CH}, \mathrm{OK}$

Please wait CH1

 $75010.0 \mathrm{Ad} . \mathrm{j}+$ +CH Done $\mathrm{CK} \mathrm{Cl}^{\mathrm{CH}}$ To do -CAL CH1Press EHTER

To initiate adjustment, press ENTER key.

Apply load corresponding to +Load Value to the transducer, then press ENTER key. Current data is shown.

Gain is being adjusted.

Adjustment is done. Press ENTER key to accept, or ESC key to cancel and return to previous adjustment.

Go to next menu selection.

To do -CAL (Load Calibrations)

For Load-Positive calibrations, this selection is omitted and the negative data is scaled the same as positive data.

The transducer must be connected to the 700 Series instrument during a calibration.

Test Signals

In data screen with Test not running: ENTER \& UP keys for + test signal(s). ENTER \& DOWN keys for - test signal(s).

If you performed a Load calibration and the transducer supports Remote calibration, you could invoke the test signals to determine the calibration values for future Remote calibrations.

When Type of CAL is Load-Pos/Neg, one of the selections in the CHAN Calibration menu is To do -CAL. This command corrects any symmetry error of the transducer by scaling negative data. Gain is not adjusted. To scale negative data, follow the steps below.

To do -CAL CH1 To initiate adjustment, press ENTER Press ENTER
 -75016.0 Ad.j-
-7506.0 DK ${ }^{\mathrm{CH}}$

CHAH Calibration
key.

Apply load corresponding to -Load Value to the transducer, then press ENTER key. Current data is shown.

Negative data is being scaled.
-CAL is done. Press ENTER key to accept, or ESC key to cancel and return to previous setting.

Return to top of CHAN Calibration menu.

CHAN CALIBRATION (MODEL DCIA)

To learn how to navigate the menu and modify selections, see MENU BASICS.

The Model DCIA is a DC Current Amplifier that can handle a 4 to 20 mA transmitter (2 or 4 wire) or a transducer that provides an output in the range, ± 10 to $\pm 20 \mathrm{~mA}$. The CHAN Calibration menu for Model DCIA allows you to define Input Range and Full Scale of the transducer, and actually adjust the Model DCIA based on these settings. The Model DCIA is an absolute measuring device, so the transducer (current source) does not need to be connected when making these selections. No manual adjustments are necessary. Use RIGHT/LEFT keys to choose from the following selections.

Input Range
Full Scale
Adjust DCIA

Select $\pm 10 \mathrm{~mA}, \pm 20 \mathrm{~mA}, 12 \pm 8 \mathrm{~mA}$, or $4-20 \mathrm{~mA}$ based on the transducer output.

Use $\pm 10 \mathrm{~mA}$ for transducers with an output on the order of 10 mA with 0 mA at zero. See following table.

Use $\pm 20 \mathrm{~mA}$ for transducers with an output on the order of 20 mA with 0 mA at zero. See following table.

Use $12 \pm 8 m A$ for transmitters in bi-directional mode $(12 \mathrm{~mA}$ zero with 8 mA positive span and 8 mA negative span). See following table.

Use 4-20 mA for transmitters in uni-directional mode (4 mA zero with 16 mA positive span). See following table.

Transducer Output (mA)				Displayed Data	
Input Range $\mathbf{1 2} \pm \mathbf{8} \mathbf{~ m A}$ $\mathbf{4 - 2 0} \mathbf{~ m A}$			General Case	Example with FS $^{*}=\mathbf{1 0 0 0}$	
15	30	24	28	$1.5 \times \mathrm{FS}^{*}$	1500
10	20	20	20	FS^{*}	1000
0	0	12	4	0	0
-10	-20	4	-12	$-\mathrm{FS}^{*}$	-1000
-15	-30	0	-20	$-1.5 \times \mathrm{FS}^{*}$	-1500

* where FS is Full Scale in engineering units.

Full Scale

Default value for Full Scale is 10000.

Enter the value (in engineering units) of the transducer output that corresponds to the Full Scale current of the Input Range selected. As you can see from the preceding table, Full Scale current is 20 mA for all input ranges, except the $\pm 10 \mathrm{~mA}$ range in which case it is 10 mA .

The Full Scale of this channel is used to:
determine scaling of displayed data in engineering units, fix the position of the decimal point in displayed data,
determine selections for display resolution,
and, set the scaling of any analog output assigned to this channel.

The overrange capability for the Model DCIA is 50% of Full Scale. So, data for this channel can be as large as 1.5 times Full Scale, otherwise OVERLOAD is displayed.

Adjust DCIA

During adjustment, it does not matter whether the transducer is connected or not.

Press ENTER key to have system automatically adjust the zero and gain of the Model DCIA using Input Range and Full Scale settings. The message, Please wait... Adjusting DCIA is displayed. Typically, the adjustments take 5 to 10 seconds. When adjustments are finished, CHAN Calibration is displayed. You can continue navigating the menu using Cursor keys, or press MENU key to exit menu.

The Model DCIA is an absolute measuring device. During adjustment, it removes the transducer connection from the input, and injects a signal from an internal programmable calibrated reference. So during adjustment, it does not matter whether the transducer (current source) is connected or not.

Normally, you do not need to perform the Adjust DCIA operation because the system automatically performs it, if necessary, when you leave the CHAN Calibration menu for the Model DCIA. If you question the adjustment, you can perform this function.

Test Signals

In data screen with Test not running: ENTER \& UP keys for + test signal(s). ENTER \& DOWN keys for - test signal(s).

You can check operation of the transducer/amplifier using internal test signals. In the data screen (with Test not running), ENTER key is used in combination with UP (or DOWN) key to activate test signal(s). While pressing ENTER key, press UP key for positive test signal(s). Release keys to remove test signal(s). For negative test signal(s) use DOWN key instead of UP key.

For the Model DCIA (DC Current Amplifier), the test signals are created with an internal programmable calibrated reference. The transducer connection is removed from the input, so it does not matter whether the transducer (current source) is connected or not. For the positive test signal, the current injected is equivalent to +Full Scale, so, the displayed data should be +Full Scale. For the negative test signal, the current injected is equivalent to -Full Scale, so, the displayed data should be -Full Scale. See Full Scale earlier in this chapter. For actual test signal currents, refer to Input Range table earlier in this chapter. For example, if Input Range is $4-20 \mathrm{~mA}$, the positive test signal is 20 mA and the negative test signal is -12 mA .

CHAN CALIBRATION (MODEL CTUA)

To learn how to navigate the menu and modify selections, see MENU BASICS.

The Model CTUA is a Frequency Input Module that can handle transducers that provide a frequency output, such as speed pickups, flowmeters, encoders, etc. The CHAN Calibration menu for Model CTUA allows you to define the type of input signal you are measuring and scale it appropriately. The Model CTUA is an absolute measuring device, so the transducer (frequency source) does not need to be connected when making these selections. No manual adjustments are necessary. Use RIGHT/LEFT keys to choose from the following selections.

Full Scale
Xdcr Freq. (Transducer Frequency)
Xdcr Value (Transducer Value)
Input Type
Polarity
Input Filter
Lowest Freq. (Lowest Frequency)

Enter the Full Scale (in engineering units) of the transducer (frequency source) connected to this channel. If a speed pickup is used, enter the largest speed of interest, not exceeding the maximum speed rating of the transducer.

The Full Scale of this channel is used to:
determine scaling of displayed data in engineering units,
fix the position of the decimal point in displayed data,
determine selections for display resolution,
and, set the scaling of any analog output assigned to this channel.

The overrange capability for the Model CTUA is 50\% of Full Scale. So, data for this channel can be as large as 1.5 times Full Scale, otherwise OVERLOAD is displayed.

Transducer Frequency | Transducer Value

Xdcr \rightarrow Transducer

Default value for Xdcr Freq is 10000.

Default value for Xdcr Value is 10000.

The two entries, Xdcr Freq and Xdcr Value, provide the necessary transducer (frequency source) calibration data required for engineering unit scaling. Xdcr Value is an arbitrary value (in engineering units), and Xdcr Freq is the corresponding frequency (in Hz) of the signal generated by the transducer at Xdcr Value. Following are three examples showing how to determine Xdcr Value and Xdcr Freq for various transducers.

Example 1:

A speed pickup with a 60 tooth gear is used and you want to display speed in RPM (rotations per minute). Determine Xdcr Freq and Xdcr Value as follows. Pick 60RPM and determine the frequency of the signal generated by speed pickup at 60RPM. You can arbitrarily pick any RPM, but when the desired engineering unit is 'per minute', an easy pick is 60 because it will cancel with 60 seconds (1 minute) as shown below.

$$
\begin{aligned}
60 \text { RPM } & =\frac{60 \text { rotations }}{\text { minute }} \times \frac{1 \text { minute }}{60 \text { seconds }} \times \frac{60 \text { pulses }}{1 \text { rotation }} \\
& =\frac{60 \text { pulses }}{1 \text { second }} \\
& =60 \mathrm{~Hz}
\end{aligned}
$$

Therefore, the speed pickup generates a 60 Hz signal at 60RPM. Enter 60 Hz as Xdcr Freq and 60RPM as Xdcr Value.

For the general case, to display speed in RPM using a 60 tooth gear, set Xdcr Freq equal to Xdcr Value.

Example 2:

A encoder with 512 pulses per revolution is used and you want to display speed in RPM (rotations per minute). Determine Xdcr Freq and Xdcr Value as follows. Pick 60RPM and determine the frequency of the signal generated by encoder at 60RPM. You can arbitrarily pick any RPM, but when the desired engineering unit is 'per minute', an easy pick is 60 because it will cancel with 60 seconds (1 minute) as shown below.

$$
\begin{aligned}
60 \text { RPM } & =\frac{60 \text { rotations }}{\text { minute }} \times \frac{1 \text { minute }}{60 \text { seconds }} \times \frac{512 \text { pulses }}{1 \text { rotation }} \\
& =\frac{512 \text { pulses }}{1 \text { second }} \\
& =512 \mathrm{~Hz}
\end{aligned}
$$

Therefore, the encoder generates a 512 Hz signal at 60RPM. Enter 512 Hz as Xdcr Freq and 60RPM as Xdcr Value.

Example 3:

A flowmeter with a calibration factor of 3000 cycles per gallon is used and you want to display flow in GPM (gallons per minute). Determine Xdcr Freq and Xdcr Value as follows. Pick 60GPM and determine the frequency of the signal generated by flowmeter at 60GPM. You can arbitrarily pick any RPM, but when the desired engineering unit is 'per minute', an easy pick is 60 because it will cancel with 60 seconds (1 minute) as shown below.

$$
\begin{aligned}
60 \text { GPM } & =\frac{60 \text { gallons }}{\text { minute }} \times \frac{1 \text { minute }}{60 \text { seconds }} \times \frac{3000 \text { cycles }}{1 \text { gallon }} \\
& =\frac{3000 \text { cycles }}{1 \text { second }} \\
& =3000 \mathrm{~Hz}
\end{aligned}
$$

Therefore, the flowmeter generates a 3000 Hz signal at 60GPM. Enter 3000 Hz as Xdcr Freq and 60RPM as Xdcr Value.

Input Type

Default setting for Input Type is TTL.	TTL	Use for signal that is compatible with TTL logic levels $\left(\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}_{\text {max }}\right.$ $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}_{\text {min }}$). A Schmitt Trigger buffer is used providing at least 0.4 V hysteresis (1V, typical). Frequency is measured from Input A. A typical transducer is a zero velocity speed pickup.
Quadrature Signals	TTL (Quadrature)	Similar to TTL setting except two quadrature signals 190° phase difference) are used providing frequency measurement with directional sign. When Input B leads
$\text { Input } A_{-}$		Input A, data is positive. Data is negative when Input A leads Input B.
$\text { Input } B]$ \square		If the sign is opposite to what you want, see Polarity later in this
Input B leads Input A by 90°.		chapter. Schmitt Trigger buffers are used providing at least 0.4 V hysteresis (1V, typical). A typical transducer is an encoder with two quadrature signals.
	$\begin{aligned} & 10 m V p-p \\ & 20 m V p-p \\ & 50 m V p-p \\ & 100 m V p-p \\ & 200 m V p-p \end{aligned}$	Use for differential signal at Input A and Input B. For the signal to be counted the peak to peak voltage of Input A with respect to Input B must exceed the setting selected. typical transducer is a passive speed
For typical cable connections, see Model CTUA Connector in APPENDIX A.		passive speed pickup is proportional to speed. At low speeds try smaller thresholds. At moderate and high speeds try larger thresholds for better noise immunity.

Polarity

Default setting for Polarity is Not Inverted.

Select Not Inverted or Inverted to change positive/negative sign for data. This is primarily used for quadrature signals. When Polarity is Not Inverted and Input B leads Input A, data is positive. In this case, if you want negative data, change Polarity to Inverted.

Polarity still reverses sign for signals without directional content (i.e. Input Type is TTL, $10 m V p-p, 20 m V p-p, 50 m V p-p$, $100 m V p-p$, or $200 m V p-p$). But, the sign will be fixed and never change.

Select None or 20 kHz to disable or enable, respectively, the low pass hardware input filter. This filter is not applied to TTL signals (i.e. Input Type is TTL or TTL Quadrature). When enabled, nominal attenuation of 3 dB is provided at 20 kHz . This noise suppression filter is applied to the input signal before digitizing (counting).

Select None if transducer generates frequencies above 20 kHz . Otherwise, valid frequencies will be attenuated, and may not exceed the input voltage thresholds, and as a result, will not be counted.

Select 20 kHz if transducer generates frequencies less than 20 kHz . This will attenuate any noise on the signal.

In addition to the hardware input filter, there is a low pass digital filter. The digital filter has selectable cutoff frequencies and is applied to digitized data. See Filter in CHAN SETTINGS.

Lowest Frequency

Default setting for Lowest Freq is 1% of FS.

For the entry, Lowest Freq., select 1% of FS or 0.01% of $F S$ to indicate the smallest data read before zero is displayed. This selection controls how fast data drops to zero when no signal is present. By definition, when determining frequency using period measurement, response time for very low frequencies is relatively long. So, the time to detect that no signal is present (OHz) depends on the lowest frequency that the Model CTUA could measure.

To determine the frequency at Full Scale, use method described in Examples 1 though 3 earlier in this chapter.

For 0.01% of $F S$, full resolution (1 part in 10000) is resolved all the way down to zero. When the frequency at Full Scale is small, the lowest frequency that can be measured may be so small that the time for it to be measured will be very long. For example, if the transducer generates a 200 Hz signal at Full Scale, the lowest frequency that can be measured is 0.02 Hz $(0.01 \%$ of 200 Hz$)$. The period of 0.02 Hz is $50 \mathrm{~s}(1 \div 0.02 \mathrm{~Hz})$. So, it will take 50 s for data to drop to zero. If this is undesirable and you are not interested in data less than 1% of Full Scale, then set Lowest Freq to 1% of FS to decrease the drop to zero time by a factor of 100 .

For 1% of $F S$, full resolution (1 part in 10000) is resolved down to 1% of Full Scale. Data is zero for frequencies less than 1% of Full Scale. Using the same example as above (the transducer generates a 200 Hz signal at Full Scale), the lowest frequency that could be measured is $2 \mathrm{~Hz}(1 \%$ of 200 Hz). The period of 2 Hz is 0.5 s . As a result, the drop to zero time is 0.5 s instead of 50s.

You can check operation of the Model CTUA (Frequency Input Module) using internal test signals. In the data screen (with Test not running), ENTER key is used in combination with UP (or DOWN) key to activate test signal(s). While pressing ENTER key, press UP key for positive test signal(s). Release keys to remove test signal(s). For negative test signal(s) use DOWN key instead of UP key.

For the Model CTUA, the test signals are created with an internal 16 MHz signal scaled to display positive or negative Full Scale value. The transducer (frequency source) does not need to be connected.

CHAN CALIBRATION (MODEL UDCA)

To learn how to navigate the menu and modify selections, see MENU BASICS.

The Model UDCA is an Encoder/Totalizer Module counting TTL quadrature signals (up and down) from linear and rotary encoders or counting (up) external events (TTL signal). The CHAN Calibration menu for Model UDCA allows you to define the type of input signal you are counting and scale it appropriately. When making these selections, it does not matter whether the transducer (count source) is connected or not. No manual adjustments are necessary. Use RIGHT/LEFT keys to choose from the following selections.

Full Scale	
Xdcr Pulses	(Transducer Pulses)
Xdcr Value	(Transducer Value)
Count Mode	
+ Direction	(when Count Mode is $1 X, 2 X$, or $4 X$)
Count Edge	(when Count Mode is Event)
ResetArm Sig	(Reset Arm Signal)
Reset Signal	
Reset Mode	

Enter the largest value (in engineering units) you expect to count. For a rotary encoder, Full Scale would be 360 degrees if the counter is reset every revolution. Or, if you are counting number of revolutions (without resetting every revolution), then use the maximum number of revolutions expected. For linear encoders, Full Scale is maximum linear distance. For event counting, Full Scale is maximum number of events expected.

The Full Scale of this channel is used to:
determine scaling of displayed data in engineering units,
fix the position of the decimal point in displayed data,
determine selections for display resolution,
and, set the scaling of any analog output assigned to this channel.

The overrange capability for the Model UDCA is 50% of Full Scale. So, data for this channel can be as large as 1.5 times Full Scale, otherwise OVERLOAD is displayed.

Transducer Pulses | Transducer Value

Xdcr \rightarrow Transducer

Default value for Xdcr Pulses is 10000 .

Default value for Xdcr Value is 10000.

Do NOT change Xdcr Pulses or Xdcr Value as a result of changing Count Mode (1X, 2X, $4 X$). By increasing Count Mode from 1X to $4 X$, there are more count pulses, but the 700 Series takes care of this increase automatically.

The two entries, Xdcr Pulses and Xdcr Value, provide the necessary transducer (count source) calibration data required for engineering unit scaling. Xdcr Value is an arbitrary value (in engineering units), and Xdcr Pulses is the corresponding number of pulses generated by the transducer to get Xdcr Value. Following are six examples showing how to determine Xdcr Value and Xdcr Pulses for various transducers.

Example 1:

A rotary encoder with 512 pulses per revolution is used and you want to display number of revolutions. Pick 1 revolution as Xdcr Value, and use 512 for Xdcr Pulses.

Example 2:

A rotary encoder with 1000 pulses per revolution is used and you want to display data in degrees. Pick 360 degrees as Xdcr Value, and use 1000 for Xdcr Pulses.

Example 3:

A linear encoder with 100 pulses per inch is used and you want to display data in inches. Pick 1 inch as Xdcr Value, and use 100 for Xdcr Pulses

Example 4:

The Model UDCA is used as an event counter counting up to 10,000 . The edge (rising or falling edge, user selectable) of an external TTL signal (Input A) is counted. Set Full Scale to 10,000. This provides a Display Resolution of 1 Event. See Display Resolution in CHAN SETTINGS. Pick 1 Event as Xdcr Value, and use 1 for Xdcr Pulses. With these settings, each event is counted and displayed up to at least 15,000 (overrange capability is 50% of Full Scale).

If you entered 20,000 as Full Scale, the Display Resolution would be 2. Each event is counted internally, but displayed data is rounded to the nearest 2 .

Example 5:

The Model UDCA is used as an event counter counting up to 999,900 . The edge (rising or falling edge, user selectable) of an external TTL signal (Input A) is counted. Set Full Scale to 999,900. This provides a Display Resolution of 100 Events. See Display Resolution in CHAN SETTINGS. Pick 1 Event as Xdcr Value, and use 1 for Xdcr Pulses. With these settings, each event is counted internally, but displayed data is rounded to the nearest 100. The maximum data displayed would be 999,900 since the display is limited to six digits.

Example 6:

The Model UDCA is used as an event counter counting up to $10,000,000$. The edge (rising or falling edge, user selectable) of an external TTL signal (Input A) is counted. Since 10,000,000 cannot be displayed on the six digit display, you have to change the units to kEvents (1000's of events). Set Full Scale to 10,000. This provides a Display Resolution of 1 kEvent. See Display Resolution in CHAN SETTINGS. Pick 1 kEvent as Xdcr Value, and use 1000 for Xdcr Pulses. With these settings, each event is counted internally, but data is displayed in kEvents (1000's of events) up to at least 15,000 kEvents (overrange capability is 50% of Full Scale).

Count Mode

Default value for Count Mode is 1X (Quadrature).

For typical cable connections, see Model UDCA
Connector in
APPENDIX A.
$2 X$ mode counts twice as many pulses as $1 X$ mode for the same input signals.

Select the way you want the counter to count. Quadrature modes allow counting in both directions (up and down). Event mode counts up only. For Quadrature modes, both signals, Input A and Input B, are required. For Event mode, only Input A is used. Choose from the following settings.

1X (Quadrature) When 1X (Quadrature) is selected, each full cycle shown in following Quadrature Count Mode diagram is counted. The edge that is counted depends on the actual signals and the + Direction and Reset Mode settings as shown in the following Quadrature Count Edge diagram.

2X (Quadrature) When $2 X$ (Quadrature) is selected, each $1 / 2$ cycle shown in following Quadrature Count Mode diagram is
$4 X$ mode counts four times as many pulses as $1 X$ mode for the same input signals.

For Event mode, Input B is ignored.

See Display Resolution in CHAN SETTINGS.

Even though in the example the $4 X$ count resolution is not viewable, you can still use it.
counted. The edge that is counted depends on the actual signals and the + Direction and Reset Mode settings as shown in the following Quadrature Count Edge diagram.

4X (Quadrature) When 4X (Quadrature) is selected, each $1 / 4$ cycle shown in following Quadrature Count Mode diagram is counted. The counter counts both edges of Input A and Input B as shown in the following Quadrature Count Edge diagram.

Event (Input A) When Event (Input A) is selected, either the rising or falling edge (see Count Edge later in this chapter) of Input A is counted.

Quadrature Count Mode Diagram

$2 X$ and $4 X$ count modes allow finer resolution for displayed data. But, for encoders with many pulses, the finer resolution is not viewable if it is smaller than the Display Resolution. For example, a rotary encoder has 3600 pulses/revolution. For a Full Scale of 360 degrees, the best Display Resolution is 0.050 degrees. The count resolution is determined as shown below.

$$
\begin{aligned}
& 1 X: \quad \frac{360 \text { degrees }}{3600 \text { counts }}=0.100 \frac{\text { degrees }}{\text { count }} \\
& 2 X: \quad \frac{360 \text { degrees }}{7200 \text { counts }}=0.050 \frac{\text { degrees }}{\text { count }} \\
& 4 X: \quad \frac{360 \text { degrees }}{14400 \text { counts }}=0.025 \frac{\text { degrees }}{\text { count }}
\end{aligned}
$$

Direction (1X, 2X, 4X Count Modes)

Default setting for

+ Direction is B leads A.

When Count Mode is $1 X, 2 X$, or $4 X$, one of the selections in the CHAN Calibration menu is + Direction. Select B leads A or A leads B to change the direction of the transducer that increments the counter. When + Direction is set to B leads A, the counter increments when Input B leads Input A and decrements when Input A leads Input B. Conversely, when + Direction is set to A leads B, the counter increments when Input A leads Input B and decrements when Input B leads Input A. The following Quadrature Count Edge diagram shows which edge increments and decrements the counter for the various Count Mode, Reset Mode, and + Direction settings.

Quadrature Count Edge Diagram

 dependent on Reset Mode in order to synchronize reset with counting so that 0 count is a full count width and it is in the same count position when direction changes.

Count Edge (Event Count Mode)

Default setting for Count Edge is Rising Edge.

Reset Arm Signal

Default setting for Reset Arm Signal is Ignored.

For external connection of Reset Arm and Reset signals, see Model UDCA Connector in Appendix A.

If the Reset Arm signal is used (i.e. TTL Low arms or TTL High arms is selected), both Reset Arm and Reset signals must be active to reset the counter.

When Count Mode is Event (Input A), one of the selections in the CHAN Calibration menu is Count Edge. Select Rising Edge or Falling Edge to specify the edge of Input A that is counted.

When Rising Edge is selected, the low (OV) to high (+5 V) transition of Input A is counted. Whereas, when Falling Edge is selected, the high (+5 V) to low (OV) transition of Input A is counted.

Select lgnored, TTL Low arms, or TTL High arms to define how the Reset Arm signal is used. The Reset Arm signal is an external input to the Model UDCA. It can be ignored or it can be used to arm (enable) the external Reset signal. If it is used, the Reset Arm signal must be active to allow the Reset signal to reset the counter. When the Reset Arm signal is not active, the Reset signal cannot reset the counter.

Ignored When Ignored is selected, the Reset Arm signal is disabled and the Reset signal works normally. See Reset Signal in next section.

TTL Low arms When TTL Low arms is selected, the Reset Arm signal is active at OV (or TTL low voltage). So, when the Reset Arm signal is OV, an active Reset signal will reset the counter. When the Reset Arm signal is at 5 V (or TTL high voltage), the Reset signal is disabled and cannot reset the counter.

TTL High arms When TTL High arms is selected, the Reset Arm signal is active at 5 V (or TTL high voltage). So, when the Reset Arm signal is 5 V , an active Reset signal will reset the counter. When the Reset Arm signal is at OV (or TTL low voltage), the Reset signal is disabled and cannot reset the counter.

One use for the Reset Arm signal involves a rotary encoder. The

Index signal from the encoder is connected to the Reset signal. It is used to reset the counter at the same position on each revolution. To count for multiple revolutions, deactivate the Reset Arm signal to prevent the Index signal from resetting the counter. Then, activate the Reset Arm signal, to reset the counter at the next Index pulse.

Reset Signal

Default setting for Reset Signal is TTL High resets.

If the Reset Arm signal is used (see Reset Arm Signal earlier in this chapter), both Reset Arm and Reset signals must be active to reset the counter.

Select Ignored, TTL Low resets, or TTL High resets to define whether the Reset signal is used, and if it is, what voltage level is active. The Reset signal is an external input to the Model UDCA. It can be ignored or it can be used to reset the counter.

$$
\begin{array}{ll}
\text { Ignored } & \begin{array}{l}
\text { When Ignored is selected, the Reset } \\
\text { signal is disabled. It will not reset the } \\
\text { counter. }
\end{array} \\
\text { TTL Low resets } & \begin{array}{l}
\text { When TTL Low resets is selected, the } \\
\text { Reset signal is active at OV (or TTL } \\
\text { low voltage). }
\end{array} \\
\text { TTL High resets } & \begin{array}{l}
\text { When TTL High resets is selected, the } \\
\text { Reset signal is active at } 5 \mathrm{~V} \text { (or TTL } \\
\text { high voltage). }
\end{array}
\end{array}
$$

The counter on a Model UDCA module is reset on power up, when RESET key (if enabled, see RESET Key - Reset UDCA Counter in CHAN SETTINGS) is pressed, via an external Reset signal at the transducer connector (if enabled, as described above), and via Logic I/O (see Reset Count in LOGIC I/O).

Reset Mode

Default value for Reset Mode is Leading Edge.

If you are unsure which Reset Mode to use, pick Leading Edge.

The Reset signal from an encoder most likely is not synchronized with the quadrature count edge. As a result, with Leading Edge and Level Count Modes, the O count will not be a full count width and it will not be in the same position when direction changes. Longer reset pulse widths and smaller count widths (4X Count Mode) worsen this effect. Use one of the synchronizing Reset Modes on the next page.

If you use Level and $1 X$ counting with a Reset signal longer than 1 cycle, then some count edges will not be counted because the counter is held in reset.

For $2 X$ counting, the Reset signal has to be longer than 1/2 cycle before counts are missed.

And, for $4 X$ counting, the Reset signal has to be longer than 1/4 cycle before counts are missed.

Select how the external Reset signal is used to reset the counter. Choose from the following settings.

Leading Edge

Level

Counter is reset when Reset signal becomes active as defined by Reset Signal setting. See following diagrams.

Reset Mode: Leading Edge Reset Signal: TTL High resets

Reset Mode: Leading Edge
Reset Signal: TTL Low resets

Counter is continuously reset while the Reset signal is active as defined by Reset Signal setting. See following diagrams.

Counter is reset repeatedly when Reset Signal is low.

Generally, choose	/B
$/ B, B, / A$ or A	B
for $2 X$ counting	$/ A$
and	A
$/ A$ AND $/ B, / A$ AND B,	$/ A$ AND $/ B$
A AND $/ B$, or A AND B	$/ A$ AND B
for $4 x$ counting.	A AND $/ B$
	A AND B

For the example to the right, when determining Internal Reset, the external Reset signal is not inverted because the Reset Signal setting is TTL High resets. Input A is inverted because the Reset Mode setting is $/ A$.

For the example to the right, when determining Internal Reset, the external Reset signal is inverted because the Reset Signal setting is TTL Low resets. Input A is not inverted and Input B is inverted because the Reset Mode setting is A AND /B.

These settings allow you to synchronize reset with count edge so that O count is a full count width and it is in the same count position when direction changes. The external Reset signal is gated (ANDed) with Input A and/or Input B signals based on the selected setting. Before ANDing, the external Reset signal is inverted if the current setting for Reset Signal (described earlier in this chapter) is $T T L$ Low resets. Otherwise, it is not inverted. The leading edge of the resultant signal is used to reset the counter. Following are two examples.

For the following example, Internal Reset is equal to the external Reset signal (non-inverted) ANDed with Input A (inverted). The counter is reset at the leading edge of Internal Reset.

Reset Mode: /A Reset Signal: TTL High resets

For the following example, Internal Reset is equal to the external Reset signal (inverted) ANDed with Input A (non-inverted) and Input B (inverted). The counter is reset at the leading edge of Internal Reset.

Reset Mode: A AND /B Reset Signal: TTL Low resets

For the example to the right, $/ B$ is a poor choice because Input B is low in two places when Reset signal is active. As a result, two reset pulses occur.

For the example to the right, /A AND /B is a poor choice because Input A and Input B are both low in two places when Reset signal is active. As a result, two reset pulses occur.

For the example to the right, A AND B is a poor choice because Input A and Input B are never both high when Reset signal is active. As a result, there is no reset pulse.

Test Signals

In data screen with
Test not running: ENTER \& UP keys for + test signal(s). ENTER \& DOWN keys for - test signal(s).

When using these synchronizing Reset Modes, there are some situations to avoid. These are described in the following diagrams.

Reset Mode: /B
Reset Signal: TTL High resets

Reset Mode: /A AND /B Reset Signal: TTL High resets

Counter is reset at both of these edges.
Input A is low, Input B is low and Reset Signal is high.

Reset Mode: A AND B
Reset Signal: TTL High resets

Counter is not reset at all because Input A and Input B are never high when Reset Signal is high.

You can check operation of most modules using internal test signals. In the data screen (with Test not running), ENTER key is used in combination with UP (or DOWN) key to activate test signal(s). While pressing ENTER key, press UP key for positive test signal(s). Release keys to remove test signal(s). For negative test signal(s) use DOWN key instead of UP key.

For the Model UDCA, there are no test signals and instead positive or negative Full Scale is displayed.

CHAN CALIBRATION (CH3 CALCULATION)

To learn how to navigate the menu and modify selections, see MENU BASICS.

Full Scale

Default value for Full Scale is 10000.

In the example, you could use 1.5 x CH1 Full Scale and
$1.5 \times$ CH2 Full Scale because the overrange capability of the system is 50% of Full Scale.

The CHAN Calibration menu for CH3 calculation allows you to define the calculation. Use RIGHT/LEFT keys to choose from the following selections.

Full Scale
Calculation
Constant A
Constant B
Constant C

Enter the Full Scale (in engineering units) of the calculation. This value can be determined by computing the calculation using the Full Scale values of the transducer channels (CH1 and/or CH2) referenced, or by arbitrarily choosing a value you think would be the largest value obtained in your application.

```
For example, \(\mathrm{CH} 3=(\mathrm{CH} 1 * \mathrm{CH} 2) / \mathrm{A}\)
    A \(=63025\)
    CH1 Full Scale is 1000 .
    CH2 Full Scale is 10000.
Then, \(\quad\) CH3 \(=(1000 \times 10000) / 63025\)
    CH3 \(=158.67\)
```

Use 158.67 as Full Scale for CH3 calculation, or if this value is not practical pick a smaller number.

The Full Scale of the CH3 calculation is used to:
fix the position of the decimal point in displayed data,
determine selections for display resolution,
and, set the scaling of any analog output assigned to CH3.

For a Full Scale value of 200, the decimal point is XXX.XXX, the best (smallest) resolution for displayed data is 0.020 (see Display Resolution in CHAN SETTINGS), and an analog output assigned to CH3 is 5 V (or 10 V if 10 V Analog Output selection is set) when CH3 equals 200.

Calculation

Default setting for Calculation is (CH1*CH2)/A.

To check calculation, use test signals. See ENTER Key in GETTING STARTED.
$\mathrm{CH}^{\wedge} 2$ is $(\mathrm{CH} 2)^{2}$.
$\mathrm{CH} 1^{\wedge} 2$ is $(\mathrm{CH} 1)^{2}$.

Square root $(\sqrt{ })$ operation is performed on one channel, not both.

Choose a calculation from the following list. If CH 1 or CH 2 are empty, the calculations referencing them are omitted from the list. Notice, there are two similar sets of calculations, one with *A (multiply by Constant A) and one with /A (divide by Constant A). See Constant A later in this chapter for explanation. The calculation is computed at 50 Hz using current data (filtered) of CH 1 and CH 2 , as applicable.

$\sqrt{\text { CH2 }}$	*A	$\sqrt{\text { CH2 }}$	/ A
CH2^2	*A	CH2^2	/ A
CH2	*A	CH2	/ A
$\sqrt{\text { CH1 }}$	*A	$\sqrt{\text { CH1 }}$	/ A
CH1^2	*A	CH1^2	/ A
CH1	*A	CH1	$1 A$
($\mathrm{CH} 1-\mathrm{CH} 2)^{*}$		($\mathrm{CH} 1-\mathrm{CH} 2$) A
($\mathrm{CH} 1+\mathrm{CH} 2$) ${ }^{\text {a }}$		($\mathrm{CH} 1+\mathrm{CH} 2)$	/ A
$\sqrt{\text { CH2*CH1 }}$		$\sqrt{ } \mathrm{CH} 2 * \mathrm{CH}$	
$\sqrt{\mathrm{CH}}{ }^{*} \mathrm{CH} 2{ }^{\text {a }}$		$\sqrt{ } \mathrm{CH} 1 * \mathrm{CH}$	
($\mathrm{CH} 2 / \mathrm{CH} 1)^{*}$		($\mathrm{CH} 2 / \mathrm{CH}$) A
($\mathrm{CH} 1 / \mathrm{CH} 2)^{*}$		($\mathrm{CH} 1 / \mathrm{CH} 2)$	/ A
($\mathrm{CH} 1 * \mathrm{CH} 2$) ${ }^{\text {A }}$		($\mathrm{CH} 1 * \mathrm{CH}$	/ A
		User De	ined

The choice, User Defined, allows you to create a calculation that is not listed. When User Defined is flashing, press ENTER key. RPN String is displayed. Edit RPN String as desired. Press ENTER key when finished.

A User Defined calculation is entered in Reverse Polish Notation (RPN). The main difference between Reverse Polish Notation and Algebraic Notation is the order in which an expression is entered. For RPN, operands are entered first, then the operator follows. The result of the operation remains and can be used in the next operation. The following example shows the sequence you would use to add two values in both Algebraic Notation and Reverse Polish Notation.

Algebraic Notation:

$$
1 \text { st value } \rightarrow \text { add operator } \rightarrow 2 \text { nd value } \rightarrow \text { equal operator }
$$

Reverse Polish Notation (RPN):
1 st value $\rightarrow 2$ nd value \rightarrow add operator

The RPN String can contain up to 11 characters each representing an operand or operator. The following table lists all operands and operators supported.

User Defined Calculation Operator/Operand List

Operators and Operands	Name	Description
1	Channel 1	Use data from channel selected. Type of data depends on which data type operator (c, x, m, h, or t) was last specified.
2	Channel 2	
3	Channel 3	
A	Constant A	Use value of user constant selected.
B	Constant B	
C	Constant C	
D	Duplicate	Copy last result.
E	Edge Counter of IM6	Result is the number of edges (false to true) on IM6 that occurred since last calculation. To accumulate the number of edges, add E to channel 3 (i.e. E3 +).
1	Pulse Width of IM5	Measures time (in ms) that IM5 is true (ON). When IM5 goes true, time measurement begins starting at 0 . When IM5 goes false (OFF), time measurement halts and is retained until IM5 goes true again.
L	Logic Level of IM4	Result is 1 if IM4 is true (ON). Result is 0 if IM4 is false (OFF).
a	Absolute Value	Compute absolute value of last result.
q	Square Root	Compute square root of last result.
n	Negation	Multiply last result by -1.
r	Reciprocal	Divide 1 by last result.
c	Current Data	Selects the type of data used for channel operands (1, 2, or 3). No data is entered. Once a type is selected, all following channel operands will be of that type, until a new type is specified.
x	Max Data	
m	Min Data	
h	Held Data	
t	Tare Value	
+	Addition	Perform the specified operation on the last two arguments. The result replaces the two arguments and can be used in further operations.
-	Subtraction	
*	Multiplication	
1	Division	

$A \rightarrow$ Constant A
$B \rightarrow$ Constant B
See next section.

IM4 \rightarrow Internal Matrix 4 IM5 \rightarrow Internal Matrix 5 IM6 \rightarrow Internal Matrix 6 See LOGIC I/O.

The following table lists examples of various calculations along with the RPN string equivalent.

Examples of User Defined Calculations

Calculation	RPN String
$\frac{\mathrm{CH} 1 \times \mathrm{CH} 2}{\mathrm{~A} \times \mathrm{B}}$	$12 * A B * /$
$\operatorname{Max}(\mathrm{CH} 1)-\mathrm{Min}(\mathrm{CH} 1)$	x1m1-
$\operatorname{Max}(\mathrm{CH} 1)+\operatorname{Max}(\mathrm{CH} 2)$	$\times 12+$
$\mathrm{CH} 1 \times \sqrt{\mathrm{CH} 2}$	12q*
$\mathrm{A} \times \mathrm{CH} 1 \times \sqrt{\frac{\mathrm{CH} 2}{\mathrm{~B}}}$	A1 * $2 \mathrm{~B} / \mathrm{q}$ *
$\sqrt{\mathrm{CH} 1^{2}+\mathrm{CH} 2^{2}}$	$1 \mathrm{D} * 2 \mathrm{D} *+\mathrm{q}$
$(\mathrm{IM} 4 \times \mathrm{CH} 1)+((1-\mathrm{IM} 4) \times \mathrm{CH} 3)$ When IM4 is true (ON), result is CH 1 . When IM4 is false (OFF), result is CH3. This calculation tracks CH 1 when IM4 is true and holds last value when IM4 is false.	$\mathrm{L} 1 * \mathrm{AL}-3 *+$ Set Constant A to 1.
$(2 \times \text { IM4 }-1) \times \text { Edges of IM6 }+\mathrm{CH} 3$ When IM4 is true (ON), each false-true edge of IM6 increments result. When IM4 is false (OFF), each false-true edge of IM6 decrements result. Reset calculation by pressing RESET key.	$\mathrm{AL} * \mathrm{~B}-\mathrm{E} * 3+$ Set Constant A to 2. Set Constant B to 1.
$\frac{\text { pulse width of IM5 }}{1000}$ Measures time (seconds) that IM5 is true (ON). When IM5 goes true, time measurement begins starting at 0 . When IM5 goes false, time measurement halts and is retained until IM5 goes true again. To convert ms to seconds, time measurement is divided by 1000 .	IA/ Set Constant A to 1000.

Constant A | Constant B | Constant C

Default values: Constant A is 1 .
 Constant B is 0 .
 Constant C is 0 .

The example to the right describes a Horsepower calculation where CH 1 is torque (in $L B-I N$) and CH 2 is speed (in RPM).

The example to the right describes a Horsepower calculation where CH 1 is torque (in OZ-IN) and CH2 is speed (in RPM).

There are three constants that can be used in the calculation. Only one, Constant A, is used in the preprogrammed calculations listed in the Calculation section earlier in this chapter. All three constants can be used in a User Defined calculation. For each constant, enter the appropriate value necessary for the calculation.

For the preprogrammed calculations listed in the Calculation section earlier in this chapter, there are two similar sets of calculations, one with $* A$ (multiply by Constant A) and one with / A (divide by Constant A). If Constant A is a very small number, change Constant A to its reciprocal $(1 / X)$ and change the calculation from $* A$ to $/ A$, or visa versa.

For example, $\mathrm{CH} 3=(\mathrm{CH} 1 * \mathrm{CH} 2) * \mathrm{~A}$

$$
\begin{aligned}
& A=1.58667 \times 10^{-5} \\
& A=0.0000158667
\end{aligned}
$$

With the six digit display, Constant A would have to entered as 0.000015 (or 0.000016). Accuracy would be compromised. So, change Constant A to its reciprocal and change the calculation to:

$$
\begin{aligned}
\mathrm{CH} 3 & =(\mathrm{CH} 1 * \mathrm{CH} 2) / \mathrm{A} \\
\mathrm{~A} & =1 / 1.58667 \times 10^{-5} \\
\mathrm{~A} & =63025
\end{aligned}
$$

Sometimes, the desired constant for the calculation is so small its reciprocal ends up being too large. Or, it is so large that its reciprocal is too small. To handle these situations, a User Defined calculation must be created using more than one constant.

For example, $\mathrm{CH} 3=(\mathrm{CH} 1 * \mathrm{CH} 2) / \mathrm{A}$

$$
A=1008400
$$

$$
1 / A=0.000000991670
$$

With the six digit display, both Constant A and its reciprocal cannot be entered. So, use two constants by creating the following User Defined calculation. User Defined calculations are described in Calculation section earlier in this chapter.

$$
\begin{aligned}
\mathrm{CH} 3 & =(\mathrm{CH} 1 * \mathrm{CH} 2) /(\mathrm{A} * \mathrm{~B}) \\
\mathrm{A} & =1008.4 \\
\mathrm{~B} & =1000 \\
\text { RPN String } & =12 * \mathrm{AB} * /
\end{aligned}
$$

SYSTEM OPTIONS

To learn how to navigate the menu and modify selections, see MENU BASICS.

Adjust Contrast

Default value for Adjust Contrast is 50

The System Options menu contains general items that pertain to the system as a whole. Use RIGHT/LEFT keys to choose from the following selections.

Adjust Contrast
Backlight
Menu Password
Check Limits
Do Max/Mins
Power Up
Power Up View
Power Up CHAN
Power Up Type
State Machine

Select value from 1 to 100 that gives the best display contrast. Temperature and viewing angle effect the contrast of the display. Increasing the contrast darkens all display segments. Increase it too much and the segments that should be OFF start to darken. Decreasing the contrast lightens all display segments. Decrease it too much and the segments that should be ON start to lighten. If the display is unreadable, try tilting it until you could read it enough to correct the contrast.

Select ON or OFF. For high ambient light the backlight may not be needed for viewing the display. In this case, select OFF. In most cases, select $O N$.

The backlight is also used to indicate the following error conditions by flashing. This flashing occurs even if Backlight is set to OFF.

Normally, the backlight flashes when any limit is violated. This feature can be disabled for each channel. See Limit Alarm in CHAN SETTINGS.

When navigating the menu, if you press an invalid key or scroll to either end of the menu, the backlight flashes.

Menu Password

Default setting for Password is SHC.

Default for Password Enable/Disable Jumper is Password Disabled.

Check Limits

Default setting for Check Limits is Always in Test.

Enter three character password of your choice. This password is used to prevent unauthorized entry to the menu if password protection is enabled. If you forget the password, then disable password protection, enter menu, and view Menu Password. To enable or disable password protection, see Password Enable/Disable Jumper in APPENDIX B.

Choose Always in Test or Use I/O Control. Limit checking is only done during a Test. See Limits in CHAN SETTINGS.

If Always in Test is selected, then limits are check continuously for all channels during a Test.

If Use I/O Control is selected, then limit checking is controlled by the Logic I/O. This allows limit checking to be performed only during critical portions of a Test. At certain points in a Test, data may legitimately exceed limits, and you do not want to signal an error. For more information see Check Limits in LOGIC I/O.

Do Max/Mins

Default setting for Do Max/Mins is Always in Test.

Power Up

Default setting for Power Up is Test OFF.

Choose Always in Test or Use I/O Control. Max/Min updating is only done during a Test.

If Always in Test is selected, then Max/Mins are updated continuously for all channels during a Test.

If Use I/O Control is selected, then Max/Min updating is controlled by the Logic I/O. This allows Max/Mins to be updated only during critical portions of a Test. At certain points in a Test, data peaks may be allowed, and you do not want to capture them. For more information see Do Max/Mins in LOGIC I/O.

Select Test ON or Test OFF. If Test ON is selected, the system automatically starts with Test running when power is applied.

For an explanation of Test, see TEST Key in GETTING STARTED. If Test OFF is selected, then the system powers up normally with Test not running. In both cases, the data screen is displayed after the Model/Version message is displayed momentarily. The TEST key still functions (toggles between Test ON and OFF) no matter which Power Up selection was made.

Power Up View

Default setting for Power Up View is 2 Channel.

Choose 2 Channel, 1 Channel, I/O Status, or Limit Status as the data screen view displayed when power is applied (after Model/Version message is displayed momentarily). For a description of these views see VIEW Key in GETTING STARTED. Also, see Power Up CHAN and Power Up Type in this chapter for more on configuring the appearance of the data screen on power up.

Power Up CHAN

Default setting for Power Up CHAN is CH1.

Select channel that will be displayed on the first line of the data screen when power is applied (after Model/Version message is displayed momentarily). See VIEW Key in GETTING STARTED for a description of data screen views. For 1 Channel, Limit Status and I/O Status views this would be the only channel displayed. For the 2 Channel view, the next channel in numeric sequence is displayed on the second line. When the data screen is displayed, you can always change the channel(s) displayed using the UP/DOWN keys. Also, see Power Up View and Power Up Type in this chapter for more on configuring the appearance of the data screen on power up.

Power Up Type

Default setting for Power Up Type is Current Data.

Select the type of data you want displayed when power is applied. Choose from Current Data, Max Data, Min Data, Spread Data, Held Data, and Tare Value. See VIEW Key in GETTING STARTED for a description of data screen views. When the data screen is displayed, you can always change the data type displayed using the LEFT/RIGHT keys. A data type icon (see Cursor Keys in GETTING STARTED) is displayed to indicate which type of data is currently viewed. Also, see Power Up View and Power Up CHAN in this chapter for more on configuring the appearance of the data screen on power up.

State Machine

Default setting for State Machine is OFF.

Select $O N$ or OFF to enable or disable the State Machine. If $O N$ is selected, then the State Machine executes when a Test is running (see TEST key in GETTING STARTED). If OFF is selected, the State Machine does not execute.

The State Machine extends the powerful Logic I/O capability of the 700 Series instruments to include event driven applications. Patterns (any possible combination of logic inputs, outputs, and internal Matrix signals) trigger the State Machine from state to state. To enter patterns, see Define Patterns in LOGIC I/O. Up to eight states are available. State outputs are available to drive logic outputs and internal Matrix signals. To define State outputs, see Pattern/State Outputs in LOGIC I/O.

During a Test, patterns are used to control the flow of the State Machine. When you first enter a Test, the State Machine starts in State1. Pattern2 is compared to actual signals, and when there is a match, the State Machine goes to State2. Then, Pattern3 is checked, and when it matches, the State Machine goes to State3. This continues to a maximum of eight states. During any state, a Pattern 1 match forces the State Machine to go to State1. Pattern1 works differently than the other patterns. Pattern 1 is checked in all states, whereas, the other patterns are only checked in the state previous the pattern number. Pattern2 is checked in State1, Pattern3 is checked in State2, and so forth. Pattern 1 acts as a reset to the State Machine because it is checked in all states. RESET key also resets State Machine to State1.

When State Machine is ON, there are no pattern outputs. Instead, there are state outputs (see Pattern/State Outputs in LOGIC I/O). When the State Machine is in a specific state, the corresponding state output is true. That is, State5 output is true when the State Machine is in State5. Each state output can drive any of the logic outputs and internal Matrix signals.

LOGIC I/O

To learn how to navigate the menu and modify selections, see MENU BASICS.

Logic inputs are external signals that can be assigned to perform input actions on one or more channels. Also, they can be used in pattern matching.

Logic outputs are external signals that can be driven by output events from one or more channels and by pattern/state outputs. Also, they can be assigned to perform input actions on one or more channels. In addition, they can be used in pattern matching.

Clear
Clr Ltch Lim \rightarrow Latched Limits

Internal Matrix signals
allow you to route output events and pattern/state outputs to input actions without wasting a logic output. They offer same capability as logic outputs, but are not available externally.

The Logic I/O menu contains items used to define the four external logic inputs, six external logic outputs, and six internal Matrix signals for control of your application. The Logic I/O capabilities described in this chapter are enabled only during a Test (see TEST Key in GETTING STARTED). The I/O Control diagram on the next page summarizes how logic inputs, outputs, and internal Matrix signals can be routed between output events (such as, HI Limit violation), input actions (such as, Tare), patterns (any logical representation of logic inputs, outputs, and internal Matrix signals), and Pattern/State outputs.

Selections in the Logic I/O menu depend on whether a channel or SYS (system) was chosen as shown below. If a channel was selected, use RIGHT/LEFT keys to choose Input Action or Output Event, described later in this chapter. If SYS was selected, use RIGHT/LEFT keys to choose Define Patterns or Pattern/State Outputs, described later in this chapter. Pattern/State Outputs has a dual meaning based on State Machine setting in the System Options menu. Pattern Outputs apply if State Machine is OFF. State Outputs apply if State Machine is ON.

If a channel is selected Input Action
Tare
Clear Tare
Hold
Clear Hold
Reset MaxMin
Clr Ltch Lim
Check Limits
Do Max/Mins
Apply + CAL ${ }^{*}$
Apply -CAL*
Reset Count**
Output Event
HI Limit
NOT HI Limit
IN Limit
NOT IN Limit
LO Limit
NOT LO Limit
At Max
NOT At Max
NOT At Min

* Does not apply for CH 3 calculation.
** Applies for Model UDCA only.
* * * Pattern Outputs (for State Machine OFF) or State Outputs (for State Machine ON).
If SYS (system) is selected Define Patterns

Pattern 1
to Pattern8 Pattern/State Outputs *** Pattern 1 OUT
(or State 1 OUT)
NOT Pattern 1 OUT
(or NOT State1 OUT)
to
Pattern8 OUT
(or State8 OUT)
NOT Pattern8 OUT
(or NOT State8 OUT)

I/O Control Diagram

Input actions and output events are shown for one channel only.

Logic inputs and outputs are available at the rear panel I/O connector. They are low-true.
 When a logic input is true (OV), all assigned input actions are performed.
 A logic output is true (OV) when any of its assigned output events or pattern/state outputs are true.

Logic Inputs Logic Outputs

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

Performs OR function. An input action is performed when any of its assigned logic inputs, outputs, and internal Matrix signals are true.

Enable or disable signal routing.

Output events can be assigned to drive logic outputs and internal Matrix signals.

For State Machine setting OFF:

When a pattern is recognized the corresponding pattern output is true and the corresponding NOT pattern output is false.

For State Machine setting ON:

When the State
Machine is in a specific state the corresponding state output is true and the corresponding NOT state output is false.

The pattern/state outputs can be assigned to drive logic outputs and internal Matrix signals.

Patterns (not shown here) are defined as any logical representation of logic inputs, outputs, and internal Matrix signals.
Use " 0 ", " 1 ", or "-" for each signal. "-" means ignore signal.

Input Actions

During a Test, an input action is performed whenever any of its assigned signals are true. The maximum delay of the input action from the time these signals go true is 1 ms (for hardware channels) or 20ms (for CH3 calculation).

Default settings for all Input Actions are:

1234
Logic Ins
LogicOuts
IntMatrix ------
123456

Inputs actions (such as, Tare) perform a given function on a channel. Each input action can be assigned to one or more logic inputs, outputs, and internal Matrix signals. During a Test, the assigned signals of an input action are OR'ed to determine whether the action is performed. In other words, whenever any of its assigned signals are true, the action is performed. On the other hand, many input actions can be assigned to the same signal. For example, input actions, Clear Tare and Reset MaxMin, for each channel can be assigned to logic input 1 providing a general reset.

When Input Action is displayed there is no entry on the second line. So, press DOWN key to go into the Input Action menu for more items. The first selection of the Input Action menu is displayed. Use RIGHT/LEFT keys to choose from:
Tare
Clear Tare
Hold
Clear Hold
Reset MaxMin
Clr Ltch Lim \quad (Clear Latched Limits)
Check Limits

Do Max/Mins	
Apply + CAL	
Apply -CAL*	* Does not apply for CH3 calculation.
Reset Count	

When the desired input action is displayed, press DOWN key. Logic Ins along with the current setting are displayed on second line. Use RIGHT/LEFT keys to choose from:

Logic Ins	Logic Inputs
LogicOuts	Logic Outputs
IntMatrix	Internal Matrix Signals

Each input action has these three selections. Shown below is an example of the Tare input action for CH 1 .

Tare	CH1	Tare chi	Tare CH
Logic Ins	1-1-	Logicouts -11-	IntMatrix 1---11
	1234	123456	123456

[^0]Whenever LI1, LI3, LO2, LO3, IM1, IM5, or IM6 are true, CH1 is tared.
IM is internal Matrix

Tare

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, the channel being set up is tared to 0 .

The Tare value is the value (when Tare operation occurred) required to force the current data to 0 . It is subtracted from new readings until another Tare or Clear Tare operation. To view Tare values, see Cursor Keys in GETTING STARTED.

The TARE key also tares channels to 0 . Channels can be disabled from responding to the TARE key. See TARE Key in CHAN SETTINGS.

Tare values are cleared on power up, when RESET key (if enabled) is pressed, via Clear Tare input action, and when a channel is calibrated.

Clear Tare

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, the Tare value of the channel being set up is cleared.

The Tare value is the value (when Tare operation occurred) required to force the current data to 0 . It is subtracted from new readings until another Tare or Clear Tare operation. To view Tare values, see Cursor Keys in GETTING STARTED.

Tare values are also cleared on power up, when RESET key (if enabled) is pressed, and when a channel is calibrated. The Clear Tare operation of the RESET key could be disabled for any channel. See RESET Key - Clear Tare in CHAN SETTINGS.

Hold

Limit checking can be performed on Held data.

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, as soon as one of the assigned signals goes true, the current data of the channel being set up is stored as Held data. All assigned signals must go false before another Hold operation can occur.

The Hold input action is different from the other input actions in
the fact that it is edge sensitive as opposed to level sensitive. The Hold operation occurs on the leading edge (false to true) of the signal created by OR'ing all assigned signals.

Each Hold operation overwrites the previous. To view Held data, see Cursor Keys in GETTING STARTED. Held data is cleared on power up, when RESET key is pressed, and via Clear Hold input action.

Clear Hold

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, the Held data of the channel being set up is cleared.

To view Held data, see Cursor Keys in GETTING STARTED. Held data is also cleared on power up and when RESET key is pressed.

Reset Max/Mins

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, Max and Min data of the channel being set up are both set to current data. As a result, Spread data (Max-Min) becomes 0 .

The current data assigned to Max and Min data during a reset depends on the Max/Min Type setting (Filtered Data or Raw Data). See Max/Min Type in CHAN SETTINGS.

To view Max or Min data, see Cursor Keys in GETTING STARTED. Max/Mins are also reset on power up and when RESET key is pressed.

Clear Latched Limits

Clear
Clr Ltch Lim \rightarrow Latched
Limits

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, any latched limit (LO and/or HI) of the channel being set up is cleared. See LO Latch and HI Latch in CHAN SETTINGS.

To view limit status for all channels, see VIEW key in GETTING

To use the Check Limits input action, make sure the Check Limits setting in System Options menu is User I/O Control.

Limit checking rate is 1000 Hz for each hardware channel and 50 Hz for CH 3 calculation.

To use the Do Max/Mins input action, make sure the Do Max/Mins setting in System Options menu is User I/O Control.

Max/Min update rate is 2000 Hz for each hardware channel and 50 Hz for CH 3 calculation.

STARTED. Latched limits are also cleared on power up, when RESET key is pressed, and when a Test is started.

Check Limits

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, limits are checked for the channel being set. When all assigned signals are false, limits are not checked. This allows limit checking to be performed only during critical portions of a Test. At certain points in a Test, data may legitimately exceed limits, and you do not want to signal an error.

Limit checking is only done during a Test. The instrument can be set up to check limits continuously for all channels during a Test (Check Limits setting in System Options menu is Always in Test). Or, limit checking of individual channels can be controlled by the Check Limits input action described here (Check Limits setting in System Options menu is Use I/O Control). See Check Limits in SYSTEM OPTIONS.

You can choose from Current data, Max data, Min data, Spread data, or Held data for each channel as the data to be limit checked. See Limit Type in CHAN SETTINGS.

Normally, the backlight flashes when any limit is violated. To disabled this feature for a channel, see Limit Alarm in CHAN SETTINGS.

To view limit status for all channels, see VIEW key in GETTING STARTED.

Do Max/Mins

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, Max/Mins are updated for the channel being set. When all assigned signals are false, updating is suspended. This allows Max/Mins to be updated only during critical portions of a Test. At certain points in a Test, data peaks may be allowed, and you do not want to capture them.

Max/Min updating is only done during a Test. The instrument can be set up to update Max/Mins continuously for all channels during a Test (Do Max/Mins setting in System Options menu is Always in Test). Or, Max/Min updating of individual channels
can be controlled by the Do Max/Mins input action described here (Do Max/Mins setting in System Options menu is Use I/O Control). See Do Max/Mins in SYSTEM OPTIONS.

For each channel, Filtered or Raw data can be used for determining Max/Mins. See Max/Min Type in CHAN SETTINGS.

To view Max or Min data, see Cursor Keys in GETTING STARTED.

Apply +CAL

Select assigned (1) or not assigned () for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, a positive test signal is applied to the channel being set up. The test signal depends on the signal conditioning module used. See Test Signals in appropriate CHAN CALIBRATION chapter.

When both Apply +CAL and Apply -CAL are true, the positive test signal is applied.

Apply -CAL is omitted for CH3 calculation.

Reset Count applies only for Model UDCA modules.

Apply -CAL

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, a negative test signal is applied to the channel being set up. The test signal depends on the signal conditioning module used. See Test Signals in appropriate CHAN CALIBRATION chapter.

Reset Count

Select assigned (1) or not assigned (-) for each logic input, output, and internal Matrix signal. During a Test, whenever any of the assigned signals are true, the counter of the UDCA channel being set up is reset.

The counter on a Model UDCA module is reset on power up, when RESET key (if enabled, see RESET Key - Reset UDCA Counter in CHAN SETTINGS) is pressed, via an external Reset signal at the transducer connector (if enabled, see Reset Signal in CHAN CALIBRATION for Model UDCA), and via Reset Count input action described here.

Output Events

During a Test, if an output event is true, its assigned signals are true. The maximum delay for these signals to go true from the time of the output event is 1 ms (for hardware channels) or 2Oms (for CH3 calculation).

Output events can perform input actions via logic outputs and internal Matrix signals. See Input Actions.

Default settings for all Output Events are:

123456
LogicOuts ------
IntMatrix

$1 \rightarrow$ assigned
$-\rightarrow$ not assigned

LO is logic output. IM is internal Matrix.

Output events are status signals (such as, HI Limit violation) unique to each channel. Each output event can drive any of the logic outputs and internal Matrix signals. During a Test, if an output event is true, its assigned signals are true. On the other hand, many output events and pattern/state outputs (described later in this chapter) can be assigned to the same signal (logic output or internal Matrix signal). The assigned output events and pattern/state outputs are OR'ed to create the signal. In other words, a logic output or internal Matrix signal is true whenever any of its assigned output events and pattern/state outputs are true. For example, output events, HI Limit and LO Limit, for each channel, can be assigned to logic output 1 creating an overall error signal.

When Output Event is displayed there is no entry on the second line. So, press DOWN key to go into the Output Event menu for more items. The first selection of the Output Event menu is displayed. Use RIGHT/LEFT keys to choose from:

HI Limit
NOT HI Limit
IN Limit
NOT IN Limit
LO Limit
NOT LO Limit
At Max
NOT At Max
At Min
NOT At Min

When the desired output event is displayed, press DOWN key. LogicOuts along with the current setting are displayed on second line. Use RIGHT/LEFT keys to choose from:

LogicOuts	Logic Outputs
IntMatrix	Internal Matrix signals

Each output event has these two selections. Shown below is an example of the HI Limit output event for CH 1 .

When CH1 HI Limit is violated, LO3, LO5, IM1, IM2, and IM6 are true. Other output events and pattern/state outputs might drive these logic outputs and internal Matrix signals also.

If Check Limits selection in System Options menu is Use I/O Control and Check Limits input action is false, then HI Limit and NOT HI Limit are both false.

NOT HI Limit is an inverted version of HI Limit. When one is true, the other is false, unless Limits are not being checked, in which case, both signals are false.

If Check Limits selection in System Options menu is Use I/O Control and Check Limits input action is false, then IN Limit and NOT IN Limit are both false.

NOT IN Limit is an inverted version of IN Limit. When one is true, the other is false, unless Limits are not being checked, in which case, both signals are false.

HI Limit

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the HI Limit of the channel being set up is violated (including HI Hysteresis, HI Latch, and Limit Mode effects as described in CHAN SETTINGS). When the HI Limit is not violated, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal.

NOT HI Limit

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the HI Limit of the channel being set up is not violated (including HI Hysteresis, HI Latch, and Limit Mode effects as described in CHAN SETTINGS). When the HI Limit is violated, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal.

IN Limit

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the IN Limit signal of the channel being set up is true. IN Limit is described in left margin note by HI Limit in CHAN SETTINGS. When the IN Limit signal is false, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal.

NOT IN Limit

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the IN Limit signal of the channel being set up is false. IN Limit is described in note in left margin by HI Limit in CHAN SETTINGS. When the IN Limit signal is true, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal.

LO Limit

Select assigned (1) or not assigned (-) for each logic output

If Check Limits selection in System Options menu is Use I/O Control and Check Limits input action is false, then LO Limit and NOT LO Limit are both false.

NOT LO Limit is an inverted version of $L O$ Limit. When one is true, the other is false, unless Limits are not being checked, in which case, both signals are false.

Max/Min update rate is 2000 Hz for each hardware channel and 50 Hz for CH 3 calculation.

If Do Max/Mins selection in System Options menu is Use I/O Control and Do Max/Mins input action is false, then At Max and NOT At Max are both false.
and internal Matrix signal. During a Test, the assigned signals are true whenever the LO Limit of the channel being set up is violated (including LO Hysteresis, LO Latch, and Limit Mode effects as described in CHAN SETTINGS). When the LO Limit is not violated, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal.

NOT LO Limit

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the LO Limit of the channel being set up is not violated (including LO Hysteresis, LO Latch, and Limit Mode effects as described in CHAN SETTINGS). When the LO Limit is violated, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal.

At Max

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever At Max for the channel being set up is true. When At Max is false, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal.

At Max is used to sense when a channel is at a peak. It is defined by the following statements.

```
At Max is set when Current data \geq Max data
    and is reset when Current data < Max data - HI Hysteresis
```

For a graphical representation, see At Max Diagram. Hysteresis is used to prevent At Max signal from oscillating ON and OFF. HI Hysteresis is also used similarly for HI Limit violations. See HI Hysteresis in CHAN SETTINGS.

When Max/Mins are reset (on power up, when RESET key is pressed, and via Logic I/O during a Test), At Max goes true and NOT At Max goes false.

When Max/Min Type is set to Filtered Data, then the digital filter is used for both channel data and Max data when determining At Max. When Max/Min Type is set to Raw Data, then the digital filter is bypassed for both channel data and Max data when determining At Max. In this case, fastest response is obtained for peak detection but noise may trigger false peaks unless $\mathrm{H} /$

Hysteresis is larger than noise. The 200 Hz low pass Bessel response hardware anti-alias filter for analog hardware channels cannot be bypassed. See Filter in CHAN SETTINGS.

At Max Diagram

If HI Hysteresis is too small, At Max may oscillate true and false when data is near Max data. If HI Hysteresis is too large, the peak may be missed or detected too late.

Because At Max goes false right after the peak, NOT At Max is more useful, since it goes true right after the peak.

NOT At Max is an inverted version of At Max. When one is true, the other is false, unless Max/Mins are not being updated, in which case, both signals are false.

Max/Min update rate is 2000 Hz for each hardware channel and 50 Hz for CH 3 calculation.

NOT At Max

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever NOT At Max for the channel being set up is true. When NOT At Max is false, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal. See At Max earlier in this chapter.

At Min

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever At Min for the channel being set up is true. When At Min is false, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal.

At Min is used to sense when a channel is at a valley. It is defined by the following statements.

At Min is set when Current data \leq Min data and is reset when Current data > Min data + LO Hysteresis

If Do Max/Mins selection in System Options menu is Use I/O Control and Do Max/Mins input action is false, then At Min and NOT At Min are both false.

For a graphical representation, see At Min Diagram. Hysteresis is used to prevent At Min signal from oscillating ON and OFF. LO Hysteresis is also used similarly for LO Limit violations. See LO Hysteresis in CHAN SETTINGS.

When Max/Mins are reset (on power up, when RESET key is pressed, and via Logic I/O during a Test), At Min goes true and NOT At Min goes false.

When Max/Min Type is set to Filtered Data, then the digital filter is used for both channel data and Max data when determining At Min. When Max/Min Type is set to Raw Data, then the digital filter is bypassed for both channel data and Min data when determining At Min. In this case, fastest response is obtained for valley detection but noise may trigger false valleys unless $\angle O$ Hysteresis is larger than noise. The 200Hz low pass Bessel response hardware anti-alias filter for analog hardware channels cannot be bypassed. See Filter in CHAN SETTINGS.

At Min Diagram

NOT At Min is an inverted version of $A t$ Min. When one is true, the other is false, unless Max/Mins are not being updated, in which case, both signals are false.

Because At Min goes false right after the valley, NOT At Min is more useful, since it goes true right after the valley.

If LO Hysteresis is too small, At Min may oscillate true and false when data is near Min data. If LO Hysteresis is too large, the valley may be missed or detected too late.

NOT At Min

Select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever NOT At Min for the channel being set up is true. When NOT At Min is false, an assigned signal is false, only if no other output events or pattern/state outputs are assigned to the same signal. See At Min earlier in this chapter.

Define Patterns

Patterns are checked during a Test only.

During a Test, defined patterns are compared to the actual signals, and when there is a match, the pattern is true. All signals (logic inputs, outputs, and internal Matrix signals) must match (unless ignore is assigned) for a pattern to be true. Patterns are checked every 1 ms .

There are eight patterns. For each pattern you define the logic state (or ignore) of each logic input, output, and internal Matrix signal. Then, during a Test, patterns are compared to actual signals. Patterns are used in two ways depending on the State Machine setting in the System Options menu.

If State Machine is OFF,

Then, during a Test, patterns are compared to actual signals, and when there is a match, the pattern is true, and therefore, its corresponding pattern output (described later in this chapter) is true. Each pattern output can drive any of the logic outputs and internal Matrix signals.

Input actions (described earlier in this chapter) include a logical OR function. The assigned signals of an input action are OR'ed to determine whether the action is performed. That is, whenever any of its assigned signals are true, the action is performed. Output events (described earlier in this chapter) also include a logical OR function. Logic outputs and internal Matrix signals are created by OR'ing all assigned output events and pattern outputs. That is, a logic output or internal Matrix signal is true whenever any of its assigned output events and pattern outputs are true. To provide a logical AND function, you must use the patterns. All signals (logic inputs, outputs, and internal Matrix signals) must match (unless ignore is assigned) for a pattern to be true.

If State Machine is ON,

Then, during a Test, patterns are used to control the flow of the State Machine. When you first enter a Test, the State Machine starts in State1. Pattern2 is compared to actual signals, and when there is a match, the State Machine goes to State2. Then, Pattern3 is checked, and when it matches, the State Machine goes to State3. This continues to a maximum of eight states. During any state, a Pattern 1 match forces the State Machine to go to State1. Pattern1 works differently than the other patterns. Pattern 1 is checked in all states, whereas, the other patterns are only checked in the state previous the pattern number. Pattern2 is checked in State1, Pattern3 is checked in State2, and so forth. Pattern1 acts as a reset to the State Machine because it is checked in all states. RESET key also resets State Machine to State1.

Default settings for all Patterns are:

	1234
Logic Ins	----
LogicOuts	-----
IntMatrix	------
	123456

When State Machine is ON, there are no pattern outputs. Instead, there are state outputs (described later in this chapter). When the State Machine is in a specific state, the corresponding state output is true. That is, State5 output is true when the State Machine is in State5. Each state output can drive any of the logic outputs and internal Matrix signals.

When Define Patterns is displayed there is no entry on the second line. So, press DOWN key to go into the Define Patterns menu for more items. The first selection of the Define Patterns menu is displayed. Use RIGHT/LEFT keys to choose from:

Pattern 1
 to
 Pattern8

When the desired pattern is displayed, press DOWN key. Logic Ins along with the current setting are displayed on second line. Use RIGHT/LEFT keys to choose from:

Logic Ins (Logic Inputs)
LogicOuts (Logic Outputs)
IntMatrix (Internal Matrix signals)
Each pattern has these three selections. Shown below is an example for Pattern 1.

Patternl		Patternl	Patternl
Logic Ins	90-1	Logicouts 60--1-	Intimarix - 011--
	1234	123456	123456

$0 \rightarrow$ false
$1 \rightarrow$ true
$-\rightarrow$ ignore
LI is logic input.
LO is logic output. IM is internal Matrix.

Pattern 1 is true when,
(LI1 is false) AND (LI2 is false) AND (LI4 is true)
AND
(LO1 is false) AND (LO2 is false) AND (LO5 is true)
AND
(IM2 is false) AND (IM3 is true) AND (IM4 is true)
Otherwise, Pattern 1 is false.

Pattern1 to Pattern8

For each of the eight patterns, select false () , true (1), or ignore (-) for each logic input, output, and internal Matrix signal. During a Test, these patterns are compared to the actual signals to determine whether they match. These could then be used to drive logic outputs and internal Matrix signals via pattern outputs or to control the flow of the State Machine.

Pattern/State Outputs

During a Test, if a pattern/state output is true, its assigned signals are true. The delay for these signals to go true from the time the signals lof the pattern definition) match is 1 ms .

Pattern/state outputs can perform input actions via logic outputs and internal Matrix signals. See Input Actions.

Default settings for all Pattern/State Outputs are:

123456
LogicOuts

IntMatrix --_-_-

This selection will be either Pattern Outputs or State Outputs depending on the State Machine setting in System Options menu. Pattern Outputs apply if State Machine is OFF. State Outputs apply if State Machine is ON.

Pattern outputs are signals based on eight user-defined patterns (described earlier in this chapter). When a Test is running and a pattern matches the actual signals, the corresponding pattern output is true.

State outputs are signals based on the current state of the State Machine. When the State Machine is in a specific state, the corresponding state output is true.

Each pattern/state output can drive any of the logic outputs and internal Matrix signals. If the pattern/state output is true, its assigned logic outputs and internal Matrix signals are true. On the other hand, many pattern/state outputs and output events (described earlier in this chapter) can be assigned to the same signal (logic output or internal Matrix signal). The assigned pattern/state outputs and output events are OR'ed to create the signal. In other words, a logic output or internal Matrix signal is true whenever any of its assigned pattern/state outputs and output events are true.

When Pattern Outputs (or State Outputs) is displayed there is no entry on the second line. So, press DOWN key to go into the Pattern Outputs (or State Outputs) menu for more items. The first selection of the Pattern Outputs (or State Outputs) menu is displayed. Use RIGHT/LEFT keys to choose from:

```
Pattern1 OUT
NOT Pattern1 OUT
        to
Pattern8 OUT
NOT Pattern8 OUT
```

State1 OUT
NOT State 1 OUT
OR
State 8 OUT
NOT State8 OUT

When the desired pattern/state output is displayed, press DOWN key. LogicOuts along with the current setting are displayed on second line. Use RIGHT/LEFT keys to choose from:

```
LogicOuts (Logic Outputs)
IntMatrix (Internal Matrix signals)
```

Each pattern/state output has these two selections. Shown below are examples for Pattern 1 OUT and State 1 OUT.

$$
\begin{aligned}
& 1 \rightarrow \text { assigned } \\
& -\rightarrow \text { not assigned }
\end{aligned}
$$

LO is logic output. IM is internal Matrix.

```
\(1 \rightarrow\) assigned
- \(\rightarrow\) not assigned
```

LO is logic output. IM is internal Matrix.

When State Machine setting is OFF, pattern outputs apply. There are no state outputs.

When State Machine setting is ON, state outputs apply. There are no pattern outputs.

Fattern $010 T$ IntMat.rix-111--

When Pattern 1 matches, LO1, LO5, IM2, IM3, and IM4 are true. Other output events and pattern outputs might drive these logic outputs and internal Matrix signals also.

St.gt.el OUTT

When State Machine is in State1, LO2, LO4, IM1, IM4, and IM5 are true. Other output events and state outputs might drive these logic outputs and internal Matrix signals also.

Pattern1 OUT to Pattern8 OUT

For each of the eight pattern outputs, select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the corresponding pattern matches actual signals. If Pattern 1 matches, then the assigned signals of Pattern 1 OUT are true. When there is no match, an assigned signal is false, only if no other output events or pattern outputs are assigned to the same signal.

State1 OUT to State8 OUT

For each of the eight state outputs, select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the State Machine is in the corresponding state. If the State Machine is in State 1, then the assigned signals of State1 OUT are true. When the State Machine is not in State1, an assigned signal is false, only if no other output events or state outputs are assigned to the same signal.

NOT Pattern1 OUT to NOT Pattern8 OUT

For each of the eight NOT pattern outputs, select assigned (1)

NOT pattern outputs are inverted versions of pattern outputs. When Pattern 1 OUT is true, NOT Pattern 1 OUT is false, and visa versa.
state outputs are inverted versions of state outputs. When State1 OUT is true, NOT State 1 OUT is false, and visa versa. or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the corresponding pattern does not match actual signals. If Pattern 1 does not match, then the assigned signals of NOT Pattern 1 OUT, are true. When there is a match, an assigned signal is false, only if no other output events or pattern outputs are assigned to the same signal.

NOT State1 OUT to NOT State8 OUT

For each of the eight NOT state outputs, select assigned (1) or not assigned (-) for each logic output and internal Matrix signal. During a Test, the assigned signals are true whenever the State Machine is not in the corresponding state. If the State Machine is not in State1, then the assigned signals of NOT State 1 OUT are true. When the State Machine is in State1, an assigned signal is false, only if no other output events or state outputs are assigned to the same signal.

ANALOG OUTPUTS

To learn how to navigate the menu and modify selections, see MENU BASICS.

See I/O Connector in APPENDIX A for external connection of the analog outputs.

For all Analog Output Option boards, the standard analog output must be set up as a 5 V output (not 10V). See Analog Outputs 5V/10V Selection Jumpers in APPENDIX B for 5V/10V selection.

Analog Output Option boards each handle one analog output. Up to two can be installed, one per analog output.

See APPENDIX H for specifications of the analog outputs.

The Analog Outputs menu allows you to define the two analog outputs and adjust them, if necessary. Use RIGHT/LEFT keys to choose from the following selections.

$$
\begin{array}{ll}
\text { CH used for ANA1 } & \text { (Channel used for Analog Output 1) } \\
\text { CH used for ANA2 } & \text { (Channel used for Analog Output 2) } \\
\text { Adjust ANAOUTS } & \text { (Adjust Analog Outputs) }
\end{array}
$$

Each of the analog outputs can be assigned to any one of the three channels (CH 1 to CH 3). The analog outputs provided on the standard 700 Series instrument are voltage outputs. You can set up each one as 5 V or 10 V outputs. See Analog Outputs $5 \mathrm{~V} / 10 \mathrm{~V}$ Selection Jumpers in APPENDIX B for $5 \mathrm{~V} / 10 \mathrm{~V}$ selection. Options MA and MB convert an analog output voltage to a current. Option MC shifts an analog output voltage by 5 V .

Option MA is an add-on board that converts an analog output voltage to a 4 to 20 mA current. Two modes, $12 \pm 8 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$, are supported. For $12 \pm 8 \mathrm{~mA}$ mode, 4 mA is negative Full Scale, 12 mA is zero, and 20 mA is positive Full Scale. For $4-20 \mathrm{~mA}$ mode, 4 mA is zero and 20 mA is positive Full Scale. See following Analog Output Reference table. See Option MA in APPENDIX B for add-on board location and for $12 \pm 8 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$ jumper selection.

Option MB is an add-on board that converts an analog output voltage to a 0 to 20 mA current. Only one mode, $10 \pm 10 \mathrm{~mA}$, is supported. OmA is negative Full Scale, 10 mA is zero, and 20 mA is positive Full Scale. See following Analog Output Reference table. See Option MB in APPENDIX B for add-on board location.

Option MC is an add-on board that shifts an analog output voltage by 5 V . Only one mode, $5 \pm 5 \mathrm{~V}$, is supported. OV is negative Full Scale, 5 V is zero, and 10V is positive Full Scale. See following Analog Output Reference table. See Option MC in APPENDIX B for addon board location.

The following table describes analog output scaling for all modes. Analog outputs are internally updated at 1000 Hz and filtered with a 100 Hz Bessel response low pass hardware filter.

Analog Output Reference Table

FS is Full Scale of channel (CH1, CH2, or CH3) assigned to analog output. See appropriate CHAN CALIBRATION chapter.

Shaded boxes in table indicate voltage or current limits reached.

See APPENDIX H for analog output resolution.

Symbol, d, is data of channel (CH1, CH2, or CH3) assigned to analog output.

FS is Full Scale of channel (CH1, CH2, or CH3) assigned to analog output.

Results are volts or $m A$.

Mode	Analog Output Formula
$\pm 5 \mathrm{~V}$	$\frac{\mathrm{~d}}{\mathrm{FS}} \times 5 \mathrm{~V}$
$\pm 10 \mathrm{~V}$	$\frac{\mathrm{~d}}{\mathrm{FS}} \times 10 \mathrm{~V}$
$5 \pm 5 \mathrm{~V}$ Option MC	$\left(\frac{\mathrm{d}}{\mathrm{FS}} \times 5 \mathrm{~V}\right)+5 \mathrm{~V}$

Mode	Analog Output Formula
$12 \pm 8 \mathrm{~mA}$ Option MA	$\left(\frac{\mathrm{d}}{\mathrm{FS}} \times 8 \mathrm{~mA}\right)+12 \mathrm{~mA}$
$4-20 \mathrm{~mA}$ Option MA	$\left(\frac{\mathrm{d}}{\mathrm{FS}} \times 16 \mathrm{~mA}\right)+4 \mathrm{~mA}$
$10 \pm 10 \mathrm{~mA}$ Option MB	$\left(\frac{\mathrm{d}}{\mathrm{FS}} \times 10 \mathrm{~mA}\right)+10 \mathrm{~mA}$

Channel used for Analog Output 1

Default setting for CH used for ANA1 is CH1 if it exists, otherwise it's CH2.

For the entry, CH used for ANA1, select the transducer channel (CH 1 or CH 2) or calculation (CH 3) that you want to drive ANA1 (Analog Output 1).

Channel used for Analog Output 2

Default setting for CH used for ANA2 is CH2 if it exists, otherwise it's CH3.

For the entry, CH used for ANA2, select the transducer channel (CH 1 or CH 2) or calculation (CH 3) that you want to drive ANA2 (Analog Output 2).

Adjust Analog Outputs

ANAOUTS $\rightarrow \begin{aligned} & \text { Analog } \\ & \text { Outputs }\end{aligned}$

At the selection, Adjust ANAOUTs, press ENTER key to have system automatically adjust both analog outputs. The messages, Please wait... Adjusting ANA1, followed by Please wait... Adjusting ANA2, are displayed. Typically, the adjustments take 5 to 15 seconds, but could take as long as 30 seconds. When adjustments are finished, the systems returns to the top of the Analog Outputs menu. Analog Outputs is displayed. You can continue navigating the menu using Cursor keys.

Normally, you do not need to adjust analog outputs because the system automatically performs this operation when necessary. If you question the analog outputs, or want them adjusted under certain conditions (like at a certain temperature) you can perform this function.

The following actions will trigger adjustment of analog outputs when exiting menu.

Calibrating CH 1 and/or CH 2 .
Changing channel assigned to either analog output.
Clearing memory (adjustment occurs next time you exit menu).

COM OPTIONS

To learn how to navigate the menu and modify selections, see MENU BASICS.

BAUD Rate

Data Bits/Parity

Default setting for Data Bits/Parity is 8/None.

The COM Options menu allows you to set up the serial communications port (RS232/422/485). Use RIGHT/LEFT keys to choose from the following selections.

BAUD Rate
Data Bits/Parity
Unit ID

Select the BAUD Rate used for serial communications. Make sure the BAUD Rate selected is the same as that for the computer. Choices are:

38400
19200
9600
4800
2400
1200
600
300

Select the number of data bits and parity for serial communications. Make sure these are set the same as those for the computer. Choices are:

7/Odd	(7 data bits, odd parity)
7/Even	(7 data bits, even parity)
8/Odd	(8 data bits, odd parity)
8/Even	(8 data bits, even parity)
8/None	(8 data bits, no parity)

Notice, with 7 data bits you must have a parity bit. Number of Stop bits is one and cannot be changed. Also, on the computer, disable all handshaking (such as, XON/XOFF, RTS, etc).

Unit ID

Default setting for Unit ID is A.

Select a character from A to Z or a to z. The Unit ID is case sensitive. Press VIEW key to change the character from uppercase to lower case, and visa versa. The Unit ID is used to identify which 700 Series instrument is being talked to when using the serial communication port. Every serial communication command sent must include the Unit ID. For RS485, up to 32 instruments can be connected to a computer. For RS232/422, only one 700 Series instrument can be connected. Even though only one instrument can be connected, the Unit ID is required for serial communication commands. See COM Connector in APPENDIX A for cable information and APPENDIX F for serial communication commands.

APPENDIX A, REAR PANEL CONNECTORS

I/O Connector

A 15 pin male mating connector with hood is provided with unit. It includes various size grommets for different cable thickness.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Logic Out 5	Logic Out 4	Logic Out 3	Logic Out 2	Logic Out 1

10	9	8	7	6
Logic $\ln 4$	Logic $\ln 3$	Logic $\ln 2$	Logic $\ln 1$	Logic Out 6

15	14	13	12	11
ANA Out 2	ANA Out 1	ANA GND	Logic GND	5 VDC

The I/O connector on the rear panel is the 15 pin female D connector labeled I/O. It contains the Logic I/O, Analog outputs, and +5 V supply voltage. The table below shows the pinout. Typical input and output connections follow. See APPENDIX H for specifications of the signals.

Examples of Typical Logic Input Sources

Logic Inputs
TTL compatible Low-true
Schmitt trigger
Pull-up Resistor:
$47 \mathrm{k} \Omega$ (internal)

TTL Compatible Driver

Open Collector (typical of solid state input modules)

Examples of Typical Logic Output Loads

Logic Outputs
Open collector
Low-true
Operating Voltage:
24V max
Sink Current:
300mA max

Ext +5VDC
Load Current:
250mA max

Solid State Relay

Model ACUA Connector

CAUTION:

The COM connector is also a 9 pin female D connector.

Transducer connectors on the rear panel are the two 9 pin female D connectors labeled CH1 and CH2. The pinout is dependent on the type of modules installed. The table below shows the pinout for the Model ACUA (AC Strain Gage Amplifier). A drawing of a typical cable follows. See APPENDIX H for specifications.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
CAL FB	+Input	-Input	ANA GND	Shield

$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$
- Excitation	-Sense	+Sense	+Excitation

Typical AC Strain Gage Transducer Cable

6 Wire Cable

(recommended for most high accuracy applications)

Model ACUA

Excitation:
3Vrms, 3030Hz
Excitation Load:
80 to 2000Ω
Input Sensitivity:
0.5 to $5 \mathrm{mV} / \mathrm{V}$

Max Cable Length: 500ft (load 2100Ω) 200ft (load<100)

Other than connections shown, isolate shields from other conductors including connector housing.

Model LVDA Connector

CAUTION:

The COM connector is also a 9 pin female D connector.

Transducer connectors on the rear panel are the two 9 pin female D connectors labeled CH1 and CH2. The pinout is dependent on the type of modules installed. The table below shows the pinout for the Model LVDA (LVDT Amplifier). A drawing of a typical cable follows. See APPENDIX H for specifications.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Reserved	+Input	-Input	ANA GND	Shield

$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$
- Excitation	-Sense	+Sense	+Excitation

Typical LVDT Transducer Cable

Model LVDA

Excitation:
2 Vrms
$2.5,3,5$, or 10 kHz
Excitation Load: 280Ω
Input Sensitivity: 100 to $1000 \mathrm{mV} / \mathrm{V}$
Max Cable Length: 50ft

Other than connections shown, isolate shields from other conductors including connector housing.

Model DCSA Connector

CAUTION:

The COM connector is also a 9 pin female D connector.

Transducer connectors on the rear panel are the two 9 pin female D connectors labeled CH1 and CH2. The pinout is dependent on the type of modules installed. The table below shows the pinout for the Model DCSA (DC Strain Gage Amplifier). A drawing of a typical cable follows. See APPENDIX H for specifications.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
CAL FB	+Input	-Input	ANA GND	Shield

$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$
- Excitation	-Sense	+Sense	+Excitation

Typical DC Strain Gage Transducer Cable

6 Wire Cable

(recommended for most high accuracy applications)

[^1]

Model DCVA Connector

CAUTION:

The COM connector is also a 9 pin female D connector.
+CAL (NO) and -CAL (NO) are normally open contacts that short to CAL COM during Remote (+) and (-) CAL operations, respectively.

For systems purchased without cables, a 9 pin male mating connector with hood is provided with unit. It includes various size grommets for different cable thickness.

Transducer connectors on the rear panel are the two 9 pin female D connectors labeled CH1 and CH2. The pinout is dependent on the type of modules installed. The table below shows the pinout for the Model DCVA (DC Voltage Amplifier). A drawing of a typical cable follows. See APPENDIX H for specifications.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
$-\mathrm{CAL}(\mathrm{NO})$	$+\mathrm{CAL}(\mathrm{NO})$	GND	- Input	+ Input

$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$
CAL COM	+5 VDC	GND	+15 VDC

Typical DC Voltage Transducer Cable

Model DCVA

Excitation Supplies:
5V@250mA* or
15V@100mA*
Input Sensitivity:
± 1 to $\pm 10 \mathrm{~V}$
Max Cable Length: 2000ft

[^2]
Model DCIA Connector

CAUTION:

The COM connector is also a 9 pin female D connector.

Transducer connectors on the rear panel are the two 9 pin female D connectors labeled CH1 and CH2. The pinout is dependent on the type of modules installed. The table below shows the pinout for the Model DCIA (DC Current Amplifier). Drawings of typical cables follow. See APPENDIX H for specifications.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Reserved	Reserved	GND	-Input	+Input

$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$
Reserved	Reserved	GND	+15 VDC

Typical Transmitter (2 wire) Cable

Typical Transmitter (4 wire) Cable

Model DCIA

Excitation Supply: 15V@30mA Input Ranges: $4-20 m A, 12 \pm 8 m A$, $O \pm 10 m A, O \pm 20 m A$ Max Cable Length: 2000ft

* If transmitter has single-ended output then connect -Input (pin 2) to GND at transmitter. Do not make this connection at DCIA connector. Instead, run separate wires for Power GND and Output GND as shown in diagram.

Model CTUA Connector

CAUTION:

The COM connector is also a 9 pin female D connector.

Transducer connectors on the rear panel are the two 9 pin female D connectors labeled CH1 and CH2. The pinout is dependent on the type of modules installed. The table below shows the pinout for the Model CTUA (Frequency Input Module). Drawings of typical cables follow. See APPENDIX H for specifications.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Reserved	GND	Input $\mathrm{B}(-)$	$\operatorname{Input} \mathrm{B}(-)$	$\operatorname{Input} \mathrm{A}(+)$

$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$
Reserved	+5 VDC	ANA GND	+12 VDC

Typical Passive Speed Pickup Cable

```
Model CTUA
Excitation Supplies:
    5V@250mA* or
    12V@125mA*
Input Types:
    Differential or
    Single-ended
Input Thresholds:
    10,20,50,100mVp-p
    or TTL
Max Cable Length:
    500ft
```

To be compatible with other systems, some Zero Velocity Speed Pickup cables have Common going to Input B (pin 2) and a jumper going from Input B (pin 3) to GND (pin 4). These cables are compatible with the Model CTUA, also.

Typical Zero Velocity Speed Pickup Cable

Typical Encoder (with Quadrature Signals) Cable

[^3]$(5 \mathrm{~V}$ current $)+4.8 \times(12 \mathrm{~V}$ current $) \leq 700 \mathrm{~mA}, \quad 5 \mathrm{~V}$ current $\leq 250 \mathrm{~mA}, \quad 12 \mathrm{~V}$ current $\leq 125 \mathrm{~mA}$

Model UDCA Connector

CAUTION:

The COM connector is also a 9 pin female D connector.

Transducer connectors on the rear panel are the two 9 pin female D connectors labeled CH1 and CH2. The pinout is dependent on the type of modules installed. The table below shows the pinout for the Model UDCA (Encoder/Totalizer Module). Drawings of typical cables follow. See APPENDIX H for specifications.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Reset	GND	Input B	Input B	Input A

$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$
Reset Arm	+5 VDC	ANA GND	+12 VDC

Typical Rotary Encoder (with Index Pulse) Cable

To have Index Pulse reset the Model UDCA counter once per revolution, make sure the Reset Signal setting is TTL Low resets or TTL High resets depending on the polarity of the Index Pulse.

If Reset Signal setting is ignore, then the Reset signal (pin 5) does not reset the counter. Index Pulse can still be connected.

The counter can also be reset via RESET key (see RESET Key - Reset UDCA Counter in CHAN SETTINGSI and/or Logic I/O Isee Reset Count in LOGIC I/O).

Model UDCA

Excitation Supplies: 5V@250mA* or 12V@125mA
Input Types: Single-ended
Count Modes:
1X, 2X, 4X, Events
Max Cable Length:
500ft

The momentary switch resets the Model UDCA counter. Make sure the Reset Signal setting is TTL Low resets.

The counter can also be reset via RESET key (see RESET Key - Reset UDCA Counter in CHAN SETTINGSI and/or Logic I/O Isee Reset Count in LOGIC I/O).

Rotary Encoder
(with Index Pulse) Model UDCA

NC is normally closed
NO is normally opened

* Both excitation voltages can be used simultaneously with the following restrictions.
$(5 \mathrm{~V}$ current $)+4.8 \times(12 \mathrm{~V}$ current $) \leq 700 \mathrm{~mA}, \quad 5 \mathrm{~V}$ current $\leq 250 \mathrm{~mA}, \quad 12 \mathrm{~V}$ current $\leq 125 \mathrm{~mA}$

Examples of Typical Reset and Reset Arm Sources

Make sure Reset Signal and/or ResetArm Sig settings are each set to the proper polarity.

Make sure Count Mode setting is Event (Input A) and Count Edge setting is set to the proper edge.

Examples of Typical Input A (Event) Sources

TTL
Compatible Driver

Input Circuit (Model UDCA)

TTL
Compatible Driver

COM Connector

CAUTION:
CH 1 and CH 2 connectors are also 9 pin female D connectors.

The RS232/485/422 communications connector on the rear panel is the 9 female D connector labeled COM. The table below shows the pinout. Drawings of typical cables follow. See APPENDIX H for specifications and APPENDIX F for serial communication commands.

$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
GND	Reserved	RXD	TXD	+ TXD

$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$
- RXD	+ RXD	Reserved	- TXD

Typical RS485 Cable

GND connection is

 used to keep common mode voltage to a safe range at receivers. If GND is not connected, reliability and noise immunity are sacrificed.
700 Series COM port

- Set BAUD Rate, \# of Data Bits, and Parity to desired values.
- Make sure each 700 Series instrument has a unique Unit ID. See Unit ID in COM OPTIONS.

Computer COM port

- Make sure BAUD Rate, \# of Data Bits, and Parity are set the same as those for the 700 Series instrument(s).
- Set \# Stop Bits to 1.
- Disable handshaking (such as, RTS, XON/XOFF, etc).
- Enable RS485 driver always. See manual for RS485 adapter. Some adapters use RTS to enable drivers. In these cases, set up port to always turn on RTS.

Termination resistors (RT) should only be used with high data rates and long cable runs. A good rule of thumb is $2000 f t$ at 38400 BAUD. Terminate with 120Ω at no more than two places; the computer and the 700 Series at the furthest end. To use the termination resistors installed in the 700 Series, see RS485/422 Termination Jumpers in APPENDIX B.

Bias resistors (RB) are used to maintain a proper idle voltage state when all drivers are inactive. Otherwise, the state of the signal is unknown.

As long as the computer communication port is set up to enable drivers (TXD) always when port is open, there is no need for bias resistors on the Receive Data lines (RXD) at the 700 Series instrument(s).

But, since the drivers (TXD) on the 700 Series instrument are only active when they are addressed, bias resistors are required on the Receive Data lines (RXD) at the computer. Typically, these are provided on the RS485 adapter.

There are two requirements for determining the value of RB. There must be at least 200 mV from $+R X D$ to $-R X D$, and the load of the RS485 drivers must be greater than 54Ω. The impedance of an RS485 receiver is $12 k \Omega$. If the bias resistors are too large, noise immunity decreases with possible data loss. If the bias resistors are too small, the load on the driver increases. The value for the bias resistors depends on whether termination resistors (RT) are used.

If termination resistors (RT) are not used, RB must be between 28Ω and $144 \mathrm{k} \Omega$. A typical value for $R B$ is $4.7 \mathrm{k} \Omega$.

If termination resistors (RT) are used, RB must be between 283Ω and 716Ω. A typical value for $R B$ is 470Ω.

Typical RS232 Cable

700 Series COM port

- Set BAUD Rate, \# of Data Bits, and Parity to desired values.
- Even though only one instrument can be connected, the Unit ID is required for serial communication commands. See Unit ID in COM OPTIONS.

Computer COM port

- Make sure BAUD Rate, \# of Data Bits, and Parity are set the same as those for the 700 Series instrument.
- Set \# Stop Bits to 1 .
- Disable handshaking (such as, RTS, XON/XOFF, etc).

APPENDIX B, INSIDE THE CABINET

Opening the Cabinet

CAUTION:

To avoid electric shock, remove power cord before opening cabinet.

- Turn power OFF and unplug unit from power source.
- Take off front bezel by removing two screws shown above.
- Lift up top cover from front and pull it outwards toward front.

Jumpers and Fuses

CAUTION:
To avoid electric shock, remove power cord before opening cabinet.

- Turn power OFF and unplug unit from power source.
- Open cabinet (see Opening the Cabinet in APPENDIX B).
- Jumpers and fuses are shown below and are described on the following pages.

Front

Password Enable/Disable Jumper

J7 No password required to enter menu.

Password required to enter menu. Default password is SHC. You can change it in the menu. See Menu Password in SYSTEM OPTIONS.

Analog Outputs 5V/10V Selection Jumpers

J24

ANA 1

is
Analog Output 1

J 24
-0
Full Scale voltage of ANA1 is 10V. This corresponds to the Full Scale (in engineering units) of the channel ($\mathrm{CH} 1, \mathrm{CH} 2$, or CH 3) assigned to ANA1.

J23 Full Scale voltage of ANA2 is 5V. This corresponds to \bigcirc the Full Scale (in engineering units) of the channel ($\mathrm{CH} 1, \mathrm{CH} 2$, or CH 3) assigned to ANA2.

ANA2

is
Analog Output 2
Full Scale voltage of ANA1 is 5 V . This corresponds to the Full Scale (in engineering units) of the channel (CH1, CH2, or CH 3) assigned to ANA1.

J23 Full Scale voltage of ANA2 is 10V. This corresponds to \square the Full Scale (in engineering units) of the channel (CH1, CH2, or CH 3) assigned to ANA2.

RS232/422/485 Selection Jumper

$R X D$ + and $R X D$ - are differential signals for Receive Data.
$T X D$ + and TXD - are differential signals for Transmit Data.

Signal
F1 External +5VDC
F2 Logic Output 6
F3 Logic Output 1
F4 Logic Output 2
F5 Logic Output 3
F6 Logic Output 4
F7 Logic Output 5
F8 Analog Output 2
F9 Analog Output 1

RS485/422 Termination Jumpers

J3 No termination resistor for RXD + and RXD - .

120Ω termination resistor between RXD + and RXD-.

No termination resistor for TXD + and TXD-.

120Ω termination resistor between TXD + and TXD-.

Logic Output Fuses

500mA Fast-Acting fuses are used for overvoltage protection on the logic outputs. In addition, the logic outputs are short circuit protected using current and thermal limits providing a maximum sink current of 300 mA . See APPENDIX H for specifications.

Replace with SHC P/N 1380-0007 (Littlefuse R451.500).

Analog Output Fuses

250mA Fast-Acting fuses are used for overvoltage protection on the analog outputs. In addition, the analog outputs are short circuit protected using a current limit providing a maximum load current of about 1 mA ($10 \mathrm{k} \Omega$ load). See APPENDIX H for specifications.

Replace with SHC P/N 1380-0006 (Littlefuse R451.250).

External +5V Fuse

Fuse labeled F1 is used for External +5 V . A 1A Slo-Blo fuse is used for overvoltage protection. In addition, External +5 V is short circuit protected using a current limit providing a maximum load current of 250 mA . See APPENDIX H for specifications.

Replace with SHC P/N 1380-0008 (Littlefuse R452.001).

Module Removal

CAUTION:
To avoid electric shock, remove power cord before opening cabinet.

- Turn power OFF and unplug unit from power source.
- Open cabinet (see Opening the Cabinet in APPENDIX B).
- The 700 Series instrument handles one or two signal conditioning modules (CH 1 and CH 2). These are shown in drawing below. Pull up on module to remove.

Anti-Static precautions must be observed when removing and handling modules.

To retain the most accurate calibration make sure removed modules are returned to original slots. Color coded stickers on the modules and motherboard serve this purpose.

Even if a module is removed, its settings are retained until a module of another type (model) is installed in that location or memory is reset.

When the unit is powered with both modules removed, memory is reset. ALL user selections are initialized to default settings.
\square

224-7379A
Motherboard

Front

CAL Resistor Installation (Models ACUA and DCSA)

CAUTION:
To avoid electric shock, remove power cord before opening cabinet.

- Turn power OFF and unplug unit from power source.
- Open cabinet (see Opening the Cabinet in APPENDIX B).
- Locate the module (Model ACUA or DCSA) requiring CAL resistor installation (see Module Removal in APPENDIX B).
- Connect CAL resistor to terminal strips as shown below. When a transducer is purchased with the system, the proper CAL resistor is installed. Otherwise, a $60 \mathrm{k} \Omega$ CAL resistor is provided. Refer to the transducer calibration sheet for the CAL resistor value. $\pm 0.02 \%, \pm 5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistors are recommended.
 touch components below them.

Excitation 5V/10V Selection Jumper (Model DCSA)

CAUTION:
To avoid electric shock, remove power cord before opening cabinet.

- Turn power OFF and unplug unit from power source.
- Open cabinet (see Opening the Cabinet in APPENDIX B).
- Locate Model DCSA (see Module Removal in APPENDIX B).
- Set Excitation Selection jumper to 5V or 10V position as shown below.

Jumper shown in 10 V (default) position.

気 $\int_{10 \mathrm{~V}}^{5 \mathrm{~V}}$ Jumper shown in 5 V position.

Option MA Current Output

CAUTION:
To avoid electric shock, remove power cord before opening cabinet.

For definition of Option MA, see ANALOG OUTPUTS chapter.

For Option MA specifications, see APPENDIX H.

To add an option MA board, remove jumper J28 (for ANA1) or J22 (for ANA2). See Jumpers and Fuses in APPENDIX B. Place board onto two standoffs making sure 8 pin socket engages header on motherboard. Push down on board until standoffs snap in.

- Turn power OFF and unplug unit from power source.
- Open cabinet (see Opening the Cabinet in APPENDIX B).
- One or two Analog Output Option boards can be installed, one for ANA1 and one for ANA2. Two Option MA boards are shown in drawing below. Select 4-20mA or $12 \pm 8 \mathrm{~mA}$ modes by changing jumpers as shown.
stands siap in.

Anti-Static precautions must be observed when removing and

Front

Option MB Current Output

CAUTION:

To avoid electric shock, remove power cord before opening cabinet.

- Turn power OFF and unplug unit from power source.
- Open cabinet (see Opening the Cabinet in APPENDIX B).
- One or two Analog Output Option boards can be installed, one for ANA1 and one for ANA2. Two Option MB boards are shown in drawing below. There are no jumpers. Only one mode, $10 \pm 10 \mathrm{~mA}$, is supported.

Anti-Static precautions must be observed when removing and handling boards.

For definition of Option MB, see ANALOG OUTPUTS chapter.

For Option MB specifications, see APPENDIX H.

To add an option MB board, remove jumper J28 (for ANA1) or J22 (for ANA2). See Jumpers and Fuses in APPENDIX B. Place board onto two standoffs making sure 8 pin socket engages header on motherboard. Push down on board until standoffs snap in.

Front

Option MC Voltage Output

CAUTION:
To avoid electric shock, remove power cord before opening cabinet.

Anti-Static precautions must be observed when removing and handling boards.

For definition of
Option MC, see
ANALOG OUTPUTS
chapter.
For definition of
Option MC, see
ANALOG OUTPUTS
chapter.
For definition of
Option MC, see
ANALOG OUTPUTS
chapter.
For definition of
Option MC, see
ANALOG OUTPUTS
chapter.

For Option MC specifications, see APPENDIX H.
o add an option MC board, remove jumper J28 (for ANA1) or J22 (for ANA2). See Jumpers and Fuses in APPENDIX B. Place board onto two standoffs making sure 8 pin socket engages header on motherboard. Push down on board until standoffs snap in. APENDIXstands sna

- Turn power OFF and unplug unit from power source.
- Open cabinet (see Opening the Cabinet in APPENDIX B).
- One or two Analog Output Option boards can be installed, one for ANA1 and one for ANA2. Two Option MC boards are shown in drawing below. There are no jumpers. Only one mode, $5 \pm 5 \mathrm{~V}$, is supported.

APPENDIX C, RESETTING MEMORY TO DEFAULTS

CAUTION:

Resetting memory initializes ALL user selections including calibration adjustments to default settings. All channels must be recalibrated.

CAUTION:

To avoid electric shock, remove power cord before opening cabinet.

User settings are stored in EEPROM. They are retained when the instrument is turned OFF. Many settings (limits, units, calibration, logic I/O, etc) are unique for each channel. Even if a hardware channel (signal conditioning module) is removed, its settings are retained until a module of another type (model) is installed in that location (channel) or memory is reset (see following discussion).

To reset memory (i.e. initialize all user selections to default settings), follow the steps below. Default settings are shown in the left margin throughout this book and are also listed in APPENDIX D.

- Turn power OFF and unplug unit from power source.
- Open cabinet (see Opening the Cabinet in APPENDIX B).
- Make sure both module slots are empty. See Module Removal in APPENDIX B.
- Place cover on cabinet to avoid electric shock. Bezel can remain off. Connect power source and turn unit ON.
- The power up message is shown for about four seconds followed by the MEMORY RESET message shown below. This message remains until power is removed.

MEMORY RESET
1: NOHE 2: FONE

- After the MEMORY RESET message appears turn the power OFF.
- Remove cover and re-insert module(s) in original slots.
- Replace cover and bezel.
- Turn power ON. All user selections are initialized to default settings.

APPENDIX D, MENU LIST WITH DEFAULT SETTINGS

CHAN Settings Menu Selections

Selection	Choices	Default	CH1	CH2	CH3 Calc
Filter	$0.1,0.2,0.5,1,2,5,10,20,50,100,200 \mathrm{~Hz}^{1}$	1 Hz			
LO Limit	enter numeric value	-10000			
LO Hysteresis	enter numeric value	0			
LO Latch	OFF or ON	OFF			
HI Limit	enter numeric value	10000			
HI Hysteresis	enter numeric value	0			
HI Latch	OFF or ON	OFF			
Limit Mode	Signed or Absolute	Signed			
Limit Type	Current, Held, Spread, Min, or Max Data	Current Data			
Limit Alarm	Flash Backlight or None	Flash Backlight			
Units	enter up to 5 characters (upper or lower case)	blank			
Display Resolution	choose from 4 choices	best (smallest)			
TARE Key	Tare Enabled or Tare Disabled	CH1/2: Enabled CH3: Disabled			
RESET Key	Clear Tare or Don't Clear Tare	Clear Tare			
Max/Min Type	Filtered Data or Raw Data	Filtered Data			
RESET Key ${ }^{2}$	Don't Reset Cntr or Reset Counter	Don't Reset Cntr			

System Options Menu Selections

Selection	Default	System	
Adjust Contrast	1 to 100	50	
Backlight	ON or OFF	ON	
Menu Password	enter 3 characters	SHC	
Check Limits	Always in Test or Use I/O Control	Always in Test	
Do Max/Mins	Always in Test or Use I/O Control	Always in Test	
Power Up	Test OFF or Test ON	Test OFF	
Power Up View	2 Channel, 1Channel, I/O Status, or Limit Status	2 Channel	
Power Up CHAN	CH1, CH2, or CH3	CH1	
Power Up Type	Current, Tare Value, Held, Spread, Min, or Max Data	Current Data	
State Machine	OFF or ON	OFF	

Analog Outputs Menu Selections

Chelection		Default	System
CH used for ANA1	$\mathrm{CH} 1, \mathrm{CH} 2$, or CH 3	CH 1, if present, otherwise CH 2	
CH used for ANA2	$\mathrm{CH} 1, \mathrm{CH} 2$, or CH 3	CH 2, if present, otherwise CH 3	
Adjust ANAOUTs	press ENTER to adjust		

COM Options Menu Selections

Selection	Choices	Default	System
BAUD Rate	$300,600,1200,2400,4800,9600,19200,38400$	38400	
Data Bits/Parity	8/None, 8/Even, 8/Odd, 7/Even, 7/Odd	$8 /$ None	
Unit ID	enter single upper or lower case alpha character	A	

1. For Model CTUA (Frequency Input Module) and Model UDCA (Encoder/Totalizer Module), the 200 Hz setting is replaced with None (no filter).
2. For Model UDCA (Encoder/Totalizer Module) only.

Logic I/O Menu Selections

Model ACUA (AC Strain Gage Amp) Calibration Menu Selections

Selection		Choices Default		CH1	CH2
Type of CAL		Shunt-Pos/Neg, Shunt-Positive, Load-Pos/Neg, or Load-Positive	Shunt-Pos/Neg		
Full Scale		enter numeric value	10000		
Zero Value		enter numeric value	0		
+CAL or +Loa	alue	enter numeric value	7500		
-CAL or -Loa	alue ${ }^{1}$	enter numeric value	-7500		
To CAL Xder	Shunt	press ENTER to Cal (adjust zero and gain)			
To Zero Xdcr	Load	press ENTER to adjust zero			
To do +CAL		press ENTER to adjust gain			
To do -CAL ${ }^{2}$		press ENTER to scale negative data			
1. For Shunt-Pos/Neg and Load-Pos/Neg only.				\uparrow	

2. For Load-Pos/Neg only.
(AC Strain Gage Amp)

Model LVDA (LVDT Amplifier) Calibration Menu Selections

Selection	Choices	Default	CH2
EXC Freq.	$2.5 \mathrm{kHz}, 3 \mathrm{kHz}, 5 \mathrm{kHz}$, or 10 kHz	5 kHz	
Type of CAL	Load-Pos/Neg or Load-Positive	Load-Pos/Neg	
Full Scale	enter numeric value	10000	
Zero Point	enter numeric value	0	
+ CAL Point	enter numeric value		
- CAL Point ${ }^{3}$	enter numeric value		
To Zero LVDT	press ENTER to adjust zero	-7500	
To do + CAL	press ENTER to adjust gain		
To do -CAL ${ }^{3}$	press ENTER to scale negative data		

Model DCSA (DC Strain Gage Amp) Calibration Menu Selections

Selection		Choices	Default	CH1	CH2
Type of CAL		Shunt-Pos/Neg, Shunt-Positive, Load-Pos/Neg, Load-Positive, mV / V-Positive, or mV/V-Pos/Neg	Shunt-Pos/Neg		
Full Scale		enter numeric value	10000		
Zero Value ${ }^{4}$		enter numeric value	0		
+CAL Value, or mV/V @	ad Value,	enter numeric value	7500		
-CAL Value, or mV/V @	oad Value,	enter numeric value	-7500		
To CAL Xdcr	Shunt \& mV/V	press ENTER to Cal (adjust zero and gain)			
To Zero Xdcr	Load	press ENTER to adjust zero			
To do +CAL		press ENTER to adjust gain			
To do -CAL ${ }^{6}$		press ENTER to scale negative data			

[^4]applies if channel is a Model DCSA
(DC Strain Gage Amp)

Model DCVA (DC Voltage Amplifier) Calibration Menu Selections

| Selection | Choices | Default | CH1 |
| :--- | :--- | :--- | :--- | :--- |
| Type of CAL | Remote-Pos/Neg, Remote-Positive, | | |
| Load-Pos/Neg, or Load-Positive | | | |

Model DCIA (DC Current Amplifier) Calibration Menu Selections

Selection	Choices	Default	CH1	
Input Range	$\pm 10 \mathrm{~mA}, \pm 20 \mathrm{~mA}, 4-20 \mathrm{~mA}$, or $12 \pm 8 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$		
Full Scale	enter numeric value	10000		
Adjust DCIA	press ENTER to Cal (adjust zero and gain)			

applies if channel is a Model DCIA (DC Current Amplifier)

Model CTUA (Frequency Input Module) Calibration Menu Selections

Selection	Choices	Default	CH1
Full Scale	enter numeric value	10000	
Xdcr Freq.	enter numeric value	10000	
Xdcr Value	enter numeric value	10000	
Input Type	TTL, TTL (Quadrature), 10, 20, 50, 100, or 200mVp-p	TTL	
Polarity	Not Inverted or Inverted	Not Inverted	
Input Filter	None or 2OkHz	None	
Lowest Freq.	1% of FS or 0.01\% of FS	1% of FS	

Model UDCA (Encoder/Totalizer Module) Calibration Menu Selections

Selection		Choices	Default	CH1	CH2
Full Scale		enter numeric value	10000		
Xdcr Pulses		enter numeric value	10000		
Xder Value		enter numeric value	10000		
Count Mode		1X, 2X, 4X (Quadrature), or Event (Signal A)	1X (Quadrature)		
+ Direction	1X,2X,4X	B leads A or A leads B	B leads A		
Count Edge	Event	Rising Edge or Falling Edge	Rising Edge		
ResetArm Sig		Ignored, TTL High arms, or TTL Low arms	Ignored		
Reset Signal		TTL High resets, TTL Low resets, or Ignored	TTL High resets		
Reset Mode		Leading Edge, Level, A AND B, A AND /B, /A AND B, or /A AND /B	Leading Edge		
				applies if channel is a Model UDCA (Encoder/Totalizer Module)	

CH3 (Calculation) Calibration Menu Selections

Selection	Default	CH3	
Full Scale	enter numeric value	10000	
Calculation	choose from list below	$(\mathrm{CH} 1 * \mathrm{CH} 2) / \mathrm{A}$	
Constant A	enter numeric value	1	
Constant B	enter numeric value	0	
Constant C	enter numeric value	0	

APPENDIX E, MENU FLOWCHART

APPENDIX F, SERIAL COMMUNICATION COMMANDS

The following information is available in comm.html file which is included in the M700 software package. This file has the latest information and is in a more readable format.
------------------Serial Communications for the 700 Series-----------------------This specification of the serial communications for the model 700 series is subject to change at any time without notice.

```
Lines that end in "=a.b" apply only to version a.b
```

Lines that end in ">c.d" apply only to versions >c.d
Lines that end in "<e.f" apply only to versions <e.f

General conventions used in this document

```
<OK> stands for the string "OK"
<ID> stands for the 700's ID (a single character)
<IX> is an alphanumeric character (A-Z or 0-9)
<CH> is a channel number (1,2,3)
<CR> is a carriage return (^M / 13 decimal / OD hexadecimal / 15 octal)
<LF> is a line feed (^J / 10 decimal / OA hexadecimal / 12 octal)
<FP> is a floating point number string (e.g. "1234.57")
<HNUM> is a hexadecimal string that is NUM characters long (e.g. <H4> could be
    "8FC4")
<ST> is a string (e.g. "LB-IN")
```

General information
All messages to and from the 700 are terminated with a <CR> or <LF>. The default termination character is <CR>. This can be changed via the "SS" command.
All messages to the 700 start with the 700 's ID, followed by a 2 character message code.
To set a value on the 700, find the message the retrieves the data you want to change. Then append to that message the desired value of the parameter. The 700 should respond with "OK".
All hexadecimal/binary data from the 700 is in big-endian (MSB first) format.
In response to any command, the 700 returns one of the following:

```
"string" where string is the data requested.
"OK" operation was successful
"!Command" command is not recognized <2.1
"!Command:xx" command "xx" is not recognized >2.0
"!Channel" command is inappropriate for the given channel.
"!Arg" parameter is malformed.
"!Index" an index <IX> is bad (see "IA" for example)
"!InTest" attempted to set a value while in test mode.
"!InMenu" attempted to set a value while in menu mode.
"!Invalid" there is some other error.
"!Unknown Error" an unknown error occurred. >1.1
"!Signal Too Small" calibration signal is too small. >1.1
"!Signal Too Large" calibration signal is too large. >1.1
"!Signal Negative" calibration signal is negative when it should be >1.1
        positive.
>1.1
"!Signal Positive" calibration signal is positive when it should be >1.1
        negative
"!Null-C Too Large" the null-c signal of an ACUA/ACUL is too large to >1.1
        compensate for.
```

>1.1
>1.1

In the following examples, assume that the ID for the 700 is "A". Remember *ALL* messages to and from the 700 series end with a CR or a LF.

Retrieve data for channel 1:
Send "ADC1" to the 700. The "A" is the 700's ID, the "DC" is the data current
command, and the "1" is for channel 1. The return message should look something like "1234.56".
Retrieve data for channel all channels:
Send "ADCO" to the 700. The "A" is the 700's ID, the "DC" is the data current command, and the "O" designates all channels. The return message should look something like "1234.56,987.654,11.2233".
Retrieve the filter on channel 2:
Send "AFL2" to the 700. The return message should be something like "07"
which implies (referring to the appropriate list under the "FL" message) that channel 2 has a filter of 20 Hz .
Set the Full Scale of channel 3 to 879.0:
Send "AFS3879.0" to the 700. The 700 should respond with "OK" if the operation was successful.
Set the filter of channel 2 to 100 Hz :
Refer to the list under the "FL" (filter) command to find that a 100 Hz filter corresponds to the value 09. Therefore, send "AFL209" to the 700. The 700 should respond with "OK" if the operation was successful.
Change the unit name of channel 1 to "LB-IN":
Send "AUN1LB-IN" to the 700. The 700 should respond with "OK" if the operation was successful.
Calibrate channel 1:
(assume channel 1 is an ACUA/ACUL and the calibration type is load) Unload the transducer and send "ACL1A" to the 700 to perform the zero calibration. Wait for an "OK" reply. Then put the + load on the transducer and send "ACL1B". Wait for an "OK" reply. Then put the - load on the transducer and send "ACL1C". Wait for an "OK" reply.
Retrieve the version number of the 700 :
Send "AVR" to the 700. The return message should be something like "Model 700 v1.2".

These messages can only retrieve information from the 700 -- they can not change any data on the 700 .
The time returned is the number of 2 kHz clock ticks since the 700 was power on. If <CH> is a "O", then the data is returned for all appropriate channels in a comma separated list.

\qquad

SS	<H4>	System Settings (16 bits)	
		0x4000: Terminate serial communications with	>6.1
		0x0000: <CR> (carriage return)	>6.1
		0x4000: <LF> (linefeed)	>6.1
		0x2000: State machine (0x0000=not) active	>4.9
		0x1000: Do (0x0000=not) always show sign of	
		0x0800: Do (0x0800=not) Display power up mes	
		0x0400: Back light (0x0000=off/0x0400=on)	
		0x0200: Do max/mins	
		0x0000: always when in test	
		0x0200: using I/O control	
		0x0100: Check Limits	
		0x0000: always when in test	
		0x0100: using I/O control	
		0x00E0: Power-up data	
		0x0000: Display current data	
		0x0020: Display max data	
		0x0040: Display min data	
		0x0060: Display spread data	
		0x0080: Display held data	
		0x00AO: Display tare data	
		0x0018: Power-up 1st channel	
		0x0000: channel 1	
		0x0008: channel 2	
		0x0010: channel 3	
		0x0006: Power-up view	
		0x0000: 2 channel	
		0x0002: Limit status	
		0x0004: I/O Status	
		0x0006: 1 Channel	>2.4
		0x0001: Power up (0x0000=not) in test mode	
CT	<H2>	ConTrast (0-100) (7 bits)	
		0x7F: LCD Contrast setting	
A1	<H2>	Analog output 1 driver (2 bits)	
		Changing this necessitates a "RS" command	
		0x03: Which channel drives analog output 1	
A2	<H2>	Analog output 2 driver (2 bits)	
		Changing this necessitates a "RS" command	
		0x03: Which channel drives analog output 2	
SP<IX>	<H4>	System Patterns (16 bits)	
		OxF000: Logic inputs	
		0xOFCO: Internal matrix	
		0x003F: Logic outputs	
		<IX> :	
		A: Pattern1	
		B: Pattern1 care bits	
		C: Pattern1 OUT (only 12 bits used)	
		D: NOT Pattern1 OUT (only 12 bits used)	
		E: Pattern2	
		F: Pattern2 care bits	
		G: Pattern2 OUT (only 12 bits used)	
		H: NOT Pattern2 OUT (only 12 bits used)	
		I: Pattern3	
		J: Pattern3 care bits	
		K: Pattern3 OUT (only 12 bits used)	
		L: NOT Pattern3 OUT (only 12 bits used)	
		M: Pattern4	>4.9
		N: Pattern4 care bits	>4.9
		0: Pattern4 OUT (only 12 bits used)	>4.9

P: NOT Pattern5 OUT (only 12 bits used) >4.9
Q: Pattern5 >4.9
R: Pattern5 care bits $\quad>4.9$
S: Pattern5 OUT (only 12 bits used) >4.9
T: NOT Pattern5 OUT (only 12 bits used) >4.9
U: Pattern6 >4.9
V: Pattern6 care bits >4.9
W: Pattern6 OUT (only 12 bits used) >4.9
X: NOT Pattern6 OUT (only 12 bits used) >4.9
Y : Pattern7 >4.9
Z: Pattern7 care bits >4.9
[: Pattern7 OUT (only 12 bits used) >4.9
।: NOT Pattern7 OUT (only 12 bits used) >4.9
]: Pattern8 >4.9
^: Pattern8 care bits >4.9
_: Pattern8 OUT (only 12 bits used) >4.9
` NOT Pattern8 OUT (only 12 bits used) >4.9
Calibration data for analog output 1 (32 bits)
The "RS" command over-writes this data
OxFFFF0000: cal-zero offset
0x0000FFOO: plus gain
0x000000FF: minus gain
<H8>
Calibration data for analog output 2 (32 bits)
The "RS" command over-writes this data
OxFFFF0000: cal-zero offset
0x0000FF00: plus gain
0x000000FF: minus gain
TiMe on $700 \quad>1.1$
The base unit of time is 0.0005 seconds (2 kHz). >1.1
I/O lines >1.1
Get the logic IO lines $\quad>1.1$
0xF000: Logic inputs $\quad>1.1$
0xOFCO: Internal matrix >1.1
0x003F: Logic outputs >1.1
CoMm port settings
This command is fairly useless, since you have to know
these settings to get these setting.
DO NOT CHANGE THESE UNLESS YOU KNOW WHAT YOU ARE DOING
OxFFOOOOOO: communication ID
0x41000000-0x5A000000: "A" - "Z"
0x61000000-0x7A000000: "a" - "z"
0x00FFOOFF: should be 0
0x00007000: \% of bits/Parity
0x00000000: 8/None
0x00001000: 8/Even
0x00002000: 8/Odd
0x00003000: 7/Even
0x00004000: 7/Odd
0x00000F00: Baud Rate
0x00000000: 300 baud
0x00000100: 600 baud
0x00000200: 1200 baud
0x00000300: 2400 baud
0x00000400: 4800 baud
0x00000500: 9600 baud
0x00000600: 19200 baud
0x00000700: 38400 baud

ZZ<ST>	<OK>	Repeat command When Internal Matrix 3 is on, repeatedly send the response to the command <ST> back to the user. E.G. Assuming that the ID of the 700 is "A", the command "AZZDC1" sets things up so that when Internal Matrix 3 is on, the 700 will return the current data for channel 1 back to the user (see the "DC" command). Send the command "AZZ" to cancel this behavior.	$\begin{aligned} & >3.9 \\ & >3.9 \\ & >3.9 \\ & >3.9 \\ & >3.9 \\ & >3.9 \\ & >3.9 \\ & >3.9 \\ & >3.9 \end{aligned}$
T0	<OK>	Exit Test mode	
T1	<OK>	Start a Test This fails if the 700 is in the menu.	
RS	<OK>	Restart System This command might take takes up to 20 seconds to finish.	
RSA	<OK>	Restart system Does not necessarily do a calibration of the analog output channels. This command might take takes up to 20 seconds to finish.	
KY<IX>	<OK>	```KeY press (and release) <IX>: A: Menu key B: View key C: Test key D: Tare key E: Hold key F: ESC/Reset key G: Enter key H: Up key I: Right key J: Down key K: Left key N: Lock key (lock/unlock the keyboard)```	
		```O: Plus Cal (use the "AS" command to apply the plus cal signal) P: Minus Cal (use the "AS" command to apply the minus cal signal)```	$\begin{aligned} & >1.3 \\ & >1.3 \\ & >1.3 \\ & >1.3 \end{aligned}$
		1: Lock keyboard	>1.1
		0: UnLock keyboard	>1.1
		2: Toggle lock state of keyboard other: Ignored	$\begin{aligned} & >1.1 \\ & >1.1 \end{aligned}$
AS<IX>	<OK>	Apply Shunt (to BOTH channels) $<I X>$ :   A: no-shunt applied   B: Apply Plus Cal   C: Apply Minus Cal	




```
 0x02000000: MUST BE 1 >5.9
 0x18000000: Excitation Frequency >5.9
 0x00000000: 2.5KHz >5.9
 0x08000000: 3KHz >5.9
 0x10000000: 5KHz
 >5.9
 0x18000000: 10KHz >5.9
If the type of <CH> is an CTUA:
 0x01000000: Zero return is (0=fast/1=slow)
 0x02000000: (0=regular/1=inverted) Polarity
 0x04000000: (1=non-) filtered input
 0x00000700: Input Type
 0x00000000: TTL input
 0x00000100: TTL quadrature input
 0x00000200: 10 mVp-p
 0x00000300: 20 mVp-p
 0x00000400: 50 mVp-p
 0x00000500: 100 mVp-p
 0x00000600: 200 mVp-p
If the type of <CH> is an UDCA:
 0x0F000000: Reset Mode
 0x00000000: Leading Edge
 0x01000000: Level
 0x02000000: A and B
 0x03000000: A and /B
 0x04000000: /A and B
 0x05000000: /A and /B
 0x06000000: A >5.0
 0x07000000: /A >5.0
 0x08000000: B >5.0
 0x09000000: /B >5.0
 0x00C00000: Reset Arm Signal
 0x00000000: Ignored
 0x00400000: TTL High arms
 0x00800000: TTL Low arms
 0x00300000: Reset Signal
 0x00000000: TTL High resets
 0x00100000: TTL Low resets
 0x00200000: Ignored
 0x00080000: + Direction
 0x00000000: B leads A
 0x00080000: A leads B
 0x00040000: Count Edge
 0x00000000: Rising Edge
 0x00040000: Falling Edge
 0x00030000: Count Mode
 0x00000000: 1x Quadrature
 0x00010000: 2x Quadrature
 0x00020000: 4x Quadrature
 0x00030000: Event Signal A
If the type of <CH> is a CALC:
 0x00000000: (CH1 * CH2) / CONST_A
 0x01000000: (CH1 / CH2) / CONST_A
 0x02000000: (CH2 / CH1) / CONST_A
 0x03000000: sqrt(CH1)* CH2 / CONST_A
 0x04000000: sqrt(CH2)* CH1 / CONST_A
 0x05000000: (CH1 + CH2) / CONST_A
 0x06000000: (CH1 - CH2) / CONST_A
 0x07000000: CH1 / CONST_A
 0x08000000: CH1^2 / CONST_A
 0x09000000: sqrt(CH1) / CONST_A
 0xOA000000: CH2 / CONST_A
 0xOB000000: CH2^2 / CONST_A
```



```
 OxFFFFFFFF0000000000000000: zero-factor (IEEE float)
 0x00000000FFFF000000000000: previous cal-zero offset
 0x000000000000FFFF00000000: previous gain
 0x0000000000000000FFFF0000: gain
 0x00000000000000000000FFFF: not used
If the type of channel is an DCIA:
 0xFFFFFFFFFFFFFFFFFOOOOFFFF: not used
 0x0000000000000000FFFF0000: gain
If the type of channel is an LVDA:
 0xFFFFFFFFF0000000000000000: zero-factor (IEEE float)
 0x00000000FFFF000000000000: previous cal-zero offset
 0x000000000000FFFF00000000: previous gain
 0x0000000000000000FFFF0000: gain
 0x00000000000000000000FFFF: copy of cal-flags
If the type of channel is a CALC:
 This data is overwritten by the "CL<CH>A" command
 if the "CF<CH>" command is NOT 0x1A000000.
 Notice that this data is hexadecimal string, NOT an
 ASCII string. See Examples below.
 OxFFFFFFFFFFFFFFFFFFFFFFFFFF: RPN String (NUL
 terminated)
 0x31 1: push(CH1 data)
 0x32 2: push(CH2 data)
 0x33 3: push(CH3 data)
 0x41 A: push(calculation constant A)
 0x42 B: push(calculation constant B) >2.0
 0x43 C: push(calculation constant C) >2.0
 0x64 d: push(top()) =1.1
 0x44 D: push(top()) >1.1
 0x45 E: push(edge counter IM6) >1.2
 Push the number of rising edges of >1.2
 Internal Matrix 6 onto the stack. >1.2
 This counter is reset every time this >1.2
 is accessed.
 >1.2
 0x49 I: push(logic inputs) =1.2
 0x49 I: push(IM5 counter) >1.2
 Push the number of 2kHz clock ticks that >1.2
 Internal Matrix 5 has been on since >1.2
 the last time it turned on. This >1.2
 'timer' gets reset every time >1.2
 Internal Matrix 5 turns on >1.2
 0x4B L: push(IM4) >1.2
 If Internal Matrix 4 is on then push 1 >1.2
 onto the stack; else push O onto the >1.2
 stack. >1.2
 0x4F 0: push(logic outputs) =1.2
 0x61 a: push(pop() absolute_value) >6.3
 0x6E n: push(pop() negate)
 0x71 q: push(pop() sqrt)
 0x72 r: push(pop() reciprocal)
 0x63 c: set data selector = current >3.9
 0x78 x: set data selector = max >3.9
 0x6D m: set data selector = min >3.9
 0x68 h: set data selector = held >3.9
 0x74 t: set data selector = tare >3.9
 0x2A *: push(pop() pop() *)
 0x2F /: push(pop() pop() /)
 0x2B +: push(pop() pop() +)
 0x2D -: push(pop() pop() -)
 other: finish w/result=top of stack
 Example 1: You want the RPN string to be "12+" (the
 sum of channel 1 and channel 2). The ASCII code
```

for "1" is $0 \times 31$, the ASCII code for "2" is $0 \times 32$, and the ASCII code for "+" is 0x2B. Therefore the appropriate command to send is "А@ВЗ31322B000000000000000000" (the "A" is the 700's ID, and the first "3" is the channel number of the calculation).
Example 2: You want the calculation to be the ratio of the spreads of channel 1 and channel 2. The RPN string is "x1m1-x2m2-/". The ASCII codes are:
$" x "=0 \times 78 \quad " 1 "=0 \times 31 \quad " m "=0 \times 6 D$
$" 1 "=0 \times 31 \quad "-"=0 x 2 D \quad " x "=0 \times 78$
"2" $=0 \times 32 \quad " m "=0 \times 6 D \quad " 2 "=0 \times 32$
"-" = 0x2D " /" = 0x2F
Therefore the appropriate command to send is
"A@B378316D312D78326D322D2F00".
Example 3: You want the calculation to track
channel 1 while Internal Matrix 4 is on. First
set Calculation Constant "A" equal to 1.000 by
using the command "ACC3A1.0000". Then an RPN
string that does the job is "1L*AL-3*+".
Therefore send "A@B3314B2A414B2D332A2B000000".
CL<CH><IX> OK
CaLibrate channel
These commands may take upto 20 seconds to finish
If the type of channel is an ACUA/ACUL/LVDA/DCVA/DCSA: <IX>:

A: Perform zero calibration
B: Perform plus calibration
C: Perform minus calibration
If the type of channel is a CALC:
<IX>:
A: Initialize RPN string from "CF" flags and other initializations
If the type of channel is a CTUA/UDCA/DCIA: <IX>:

A: Calibrate channel
--------------------Speed of Communication at 38400 baud--------------------------
The data for the "MEASURED SPEED" and "THEORETICAL SPEED" is in messages per seconds
The "MEASURED SPEED" is the number of messages per second that the Visual Basic program "savedata.exe" executes.
"THEORETICAL SPEED" takes in account the latency of the 700, and assumes NO latency for the PC

ALL CHANNELS:

TYPE OF DATA	MESSAGE	MEASURED SPEED	THEORETICAL SPEED	CHARACTERS PER REPLY
Time + Float	AECO	$47-55$	80	$18-36$
Time+Hex	AYCO	$80-90$	140	19
Float	ADCO	$60-72$	100	$9-27$
Hex	AXCO	$128-135$	235	10

SINGLE CHANNEL:

TYPE OF DATA	MESSAGE	MEASURED SPEED	THEORETICAL SPEED	CHARACTERS PER REPLY
Time+Float	AEC1	$82-90$	140	$12-18$
Time+Hex	AYC1	$103-110$	180	14
Float	ADC1	$128-137$	220	$3-9$
Hex	AXC1	$180-190$	350	5

ALL CHANNELS -- ZZ Command -- THEORETICAL SPEED assumes the latency of 700 to be 0 :

TYPE OF DATA	MESSAGE	MEASURED SPEED	THEORETICAL SPEED	CHARACTERS PER REPLY
Time+Float	AZZECO	-	$213-106$	$18-36$
Time+Hex	AZZYCO	184	202	19
Float	AZZDCO	-	$426-142$	$9-27$
Hex	AZZXCO	333	384	10

SINGLE CHANNEL -- ZZ Command -- THEORETICAL SPEED assumes the latency of 700 to be 0:

TYPE OF DATA	MESSAGE	MEASURED SPEED	THEORETICAL SPEED	CHARACTERS PER REPLY
Time+Float	AZZEC1	-	$320-213$	$12-18$
Time+Hex	AZZYC1	250	274	14
Float	AZZDC1	-	$1280-426$	$3-9$
Hex	AZZXC1	666	768	5

## APPENDIX G, SYSTEM RESPONSE RATES

Model ACUA (AC Strain Gage Amplifier) Rates

Model LVDA (LVDT Amplifier) Rates

Model DCSA (DC Strain Gage Amplifier) Rates

Model DCVA (DC Voltage Amplifier) Rates

## Model DCIA (DC Current Amplifier) Rates

These models vary in the excitation voltage(s) provided and how the signal is conditioned. Once the signal is digitized all five models perform the same.

The Model ACUA excites a strain gage transducer with a $3 \mathrm{Vrms}, 3030 \mathrm{~Hz}$ sine wave. The AC output signal ( 0.5 to $5 \mathrm{mV} / \mathrm{V}$ ) of the transducer is amplified, conditioned, and demodulated providing a DC voltage. This DC signal is filtered with a 200 Hz 7 pole low pass Bessel response hardware antialias filter.

The Model LVDA excites an LVDT transducer with a 2 Vrms sine wave. You can select amongst 2.5 kHz , $3 \mathrm{kHz}, 5 \mathrm{kHz}$, and 10 kHz frequencies. The AC output signal ( 100 to $1000 \mathrm{mV} / \mathrm{V}$ ) of the LVDT is amplified, conditioned, and demodulated providing a DC voltage. This DC signal is filtered with a 200 Hz 7 pole low pass Bessel response hardware antialias filter.

The Model DCSA excites a directly wired strain gage transducer with a 5 or 10VDC regulated supply. The DC output signal ( 0.5 to $4.5 \mathrm{mV} / \mathrm{V}$ ) of the transducer is amplified and conditioned. This DC signal is filtered with a 200 Hz 5 pole low pass Bessel response hardware antialias filter.

The Model DCVA provides 5VDC and 15VDC excitation supplies to power a transducer. The DC output signal ( $\pm 1$ to $\pm 10 \mathrm{VDC}$ ) of the transducer is conditioned and filtered with a 200 Hz 5 pole low pass Bessel response hardware antialias filter.

MaxMin update and limit checking are performed only while running a Test.

The Model DCIA can be connected to a 4 to 20 mA transmitter (2 or 4 wire) or a transducer with a 10 to 20 mA output. This DC current signal is converted to voltage, conditioned, and filtered with a 200 Hz 5 pole low pass Bessel response hardware antialias filter.

For all five models, the DC signal from the low pass hardware antialias filter is sampled (Analog to Digital Conversion) at $2000 \mathrm{~Hz}(0.5 \mathrm{~ms})$. The digitized data is digitally filtered at a selectable cutoff frequency from 0.1 to 200 Hz (see Filter in CHAN SETTINGS). As with any filter, the digital filter delays the signal, more so at low cutoff frequencies. The step response of the digital filter is between $1 / 2$ and 1 period ( $1 / \mathrm{f}_{\mathrm{C}}$ ) of the cutoff frequency for data to get to $99.9 \%$ of actual value. If the filter is set to 200 Hz , expect 2.5 to 5 ms for data to reach $99.9 \%$ of actual value. Expect 0.5 to 1 s when the filter is set to 1 Hz .

Max/Mins are updated at $2000 \mathrm{~Hz}(0.5 \mathrm{~ms})$ using data before or after the digital filter. This is user selectable. See Max/Min Type in CHAN SETTINGS.

Limit checking is performed at $1000 \mathrm{~Hz}(1 \mathrm{~ms})$ using the type of data (Current Data, Max Data, Min Data, Spread Data, or Held Data) you choose. See Limit Type in CHAN SETTINGS.

## Model CTUA (Frequency Input Module) Rates

The Model CTUA measures one or more periods of the input signal and converts this to frequency. At low frequencies $(<1000 \mathrm{~Hz})$, one period is measured to get the specified resolution ( $0.01 \%$ of Full Scale). So, the sampling time at low frequencies is equal to the period of the input signal. At high frequencies ( $>1000 \mathrm{~Hz}$ ), multiple periods are measured to get the specified resolution. The number of periods measured depends on the frequency of the input signal. A minimum of 1 ms is required to obtain the specified resolution. Since the input signal is not synchronized to the internal 32 MHz clock, an extra period may be measured beyond the 1 ms minimum time. So, the sampling time at high frequencies ranges from 1 ms to 1 ms plus the period of the input signal. For example, if the input frequency is 1000 Hz , then the sampling time ranges from 1 to $2 \mathrm{~ms}(1 \mathrm{~ms}+1 / 1000 \mathrm{~Hz})$. For 20000 Hz the sampling time ranges from 1 to $1.05 \mathrm{~ms}(1 \mathrm{~ms}+1 / 20000 \mathrm{~Hz}$ ).

The digitized data can be digitally filtered at a selectable cutoff frequency from 0.1 to 100 Hz , or the digital filter can be bypassed (None). See Filter in CHAN SETTINGS. As with any filter, the digital filter delays the signal, more so at low cutoff

This is not a hardware filter. So, noise spikes above selected thresholds will be measured even with digital filter invoked. For hardware filter, see Input Filter in CHAN CALIBRATION (MODEL CTUA).

MaxMin update and limit checking are performed only while running a Test.
frequencies. The step response of the digital filter is between $1 / 2$ and 1 period $\left(1 / f_{c}\right)$ of the cutoff frequency for data to get to $99.9 \%$ of actual value. If the filter is set to 100 Hz , expect 5 to 10 ms for data to reach 99.9 \% of actual value. Expect 0.5 to 1 s when the filter is set to 1 Hz .

Max/Mins are updated at $2000 \mathrm{~Hz}(0.5 \mathrm{~ms})$ using data before or after the digital filter. This is user selectable. See Max/Min Type in CHAN SETTINGS. Data is not sampled this fast, so data used for Max/Min update is repeated.

Limit checking is performed at $1000 \mathrm{~Hz}(1 \mathrm{~ms})$ using the type of data (Current Data, Max Data, Min Data, Spread Data, or Held Data) you choose. See Limit Type in CHAN SETTINGS. For low sampling rates (low input frequencies), data used for limit checking is repeated.

## Model UDCA (Encoder/Totalizer Module) Rates

Generally, the digital filter for the Model UDCA is not desirable. One use is when an encoder jitters between positions. This is not a hardware filter. So, noise spikes above TTL thresholds will be counted even with digital filter invoked.

MaxMin update and limit checking are performed only while running a Test.

The Model UDCA counts edges of a pair of TTL quadrature signals (up and down) or counts edges of a single TTL signal (up). Signals as fast as $400 \mathrm{kHz}(2.5 \mu \mathrm{~s})$ can be counted internally. Data is read from the counter at $2000 \mathrm{~Hz}(0.5 \mathrm{~ms})$.

This data can be digitally filtered at a selectable cutoff frequency from 0.1 to 100 Hz , or the digital filter can be bypassed (None). See Filter in CHAN SETTINGS. As with any filter, the digital filter delays the signal, more so at low cutoff frequencies. The step response of the digital filter is between $1 / 2$ and 1 period $\left(1 / f_{c}\right)$ of the cutoff frequency for data to get to $99.9 \%$ of actual value. If the filter is set to 100 Hz , expect 5 to 10 ms for data to reach $99.9 \%$ of actual value. Expect 0.5 to 1 s when the filter is set to 1 Hz .

Max/Mins are updated at $2000 \mathrm{~Hz}(0.5 \mathrm{~ms})$ using data before or after the digital filter. This is user selectable. See Max/Min Type in CHAN SETTINGS.

Limit checking is performed at $1000 \mathrm{~Hz}(1 \mathrm{~ms})$ using the type of data (Current Data, Max Data, Min Data, Spread Data, or Held Data) you choose. See Limit Type in CHAN SETTINGS.

## CH3 Calculation Rates

MaxMin update and limit checking are performed only while running a Test.

The calculation is computed at 50 Hz ( 20 ms ). It is not digitally filtered. But, data from CH 1 and CH 2 used in the calculation are filtered. All filters introduce a delay. For CH 1 and CH 2 to be delayed similarly, use the same filter for both channels.

Max/Mins of the calculation are updated at 50 Hz . And, limit checking is performed at 50 Hz using the type of data (Current Data, Max Data, Min Data, Spread Data, or Held Data) you choose. See Limit Type in CHAN SETTINGS.

## Logic I/O Response Time

Logic I/O capabilities are enabled only while running a Test.

The Logic I/O response time is $1 \mathrm{~ms}(1000 \mathrm{~Hz})$ for hardware channels ( CH 1 and CH 2 ) and $20 \mathrm{~ms}(50 \mathrm{~Hz})$ for CH 3 calculation. In other words, Logic I/O signals are activated at most 1 ms (for hardware channels) or 20 ms (for CH 3 calculation) after an output event goes true, while input actions are executed at most 1 ms (for hardware channels) or 20 ms (for CH 3 calculation) after the activation of the Logic I/O signal(s). These times do not include filter delay or sampling rate. See previous sections.

## Analog Output Rates

The analog outputs are updated with channel data at 1000 Hz . If channel data is sampled at a lower rate (for example, CH3 calculation is computed at 50 Hz ), then data is repeated. To select the channel assigned to an analog output, see ANALOG OUTPUTS chapter.

Digitally filtered data (for hardware channels) or computed data (for CH 3 calculation) is used. Furthermore, each analog output has a 100 Hz 5 pole Bessel response low pass hardware filter. The step response of this filter is approximately 10 ms for data to get to $99.9 \%$ of actual value.

The hardware channels digital filter and the analog output filter both effect the response of the analog output. For example, if the digital filter of CH 1 is 1 Hz , the analog output response is 1 Hz . The 100 Hz analog output filter has little effect. If the digital filter of CH 1 is 200 Hz , the analog output response is 100 Hz (the effect of the analog output filter).

## APPENDIX H, SPECIFICATIONS

## System Specifications

Display
Type 2 line by 16 characters, backlit, LCD with adjustable contrast.
Character Size $0.2^{\prime \prime}$ wide, $0.3^{\prime \prime}$ high.
Views Select from 1 Channel, 2 Channel, Limit Status, and I/O Status.
Data Displayed Select from Current, Max, Min, Spread, Held data and Tare value.
Numeric Format . . . . . . . . . Data displayed in engineering units with 6 digits (1-2-5 format).
Units 5 character user-entered unit name is displayed.
Channels
Hardware Supports one or two signal conditioning modules ( CH 1 and CH 2 ).
Calculated One (CH3).
Choose from list of formulas or enter a user defined formula.
ResponseData Sampling Rate . . . . . . . . 2000 Hz (analog hardware channels), 50 Hz (CH3 calculation).
Max/Min Update Rate 2000 Hz (analog hardware channels), 50 Hz (CH3 calculation).
Limit Checking Rate 1000 Hz (hardware channels), 50 Hz (CH3 calculation).
Logic I/O Response Time 1 ms (hardware channels), 20 ms (CH3 calculation).
Update Rate for each Analog Output ..... 1000 Hz .
Display Update Rate ..... 4Hz.
Four Logic Inputs Programmable.
Type TTL compatible, Schmitt Trigger, low-true.
Internal Pull-up Resistor ..... $47 \mathrm{k} \Omega$.
Input Current ..... $-100 \mu \mathrm{~A}$ @ 0 V .
Protection ..... To $\pm 130 \mathrm{VDC}$ or 130 VAC .
Six Logic Outputs Programmable.
Type Open collector, low-true.
Maximum Operating Voltage ..... 24 V .
Maximum Sink Current ..... 300 mA .
Protection Short circuit (current and thermal limits),Overvoltage ( 0.5 A fuse) to $\pm 130 \mathrm{VDC}$ or 130VAC.
Control All I/O functions can be OR'ed. Patterns add AND'ing capability.Input Actions . . . . Logic inputs, outputs, and internal Matrix signals control following actions.(per channel)Tare, Clear Tare, Hold, Clear Hold, Reset Max/Min,Clear Latched Limits, Check Limits, Do Max/Mins,Apply +CAL, Apply -CAL, Reset Count (Model UDCA only).
Output Events The following events drive logic outputs and internal Matrix signals.(per channel)

Eight User-defined Patterns
State Machine (eight states)

HI Limit, NOT HI Limit, IN Limit, NOT IN Limit, LO Limit, NOT LO Limit, At Max, NOT At Max, At Min, NOT At Min. Based on logic inputs, outputs, and internal Matrix signals. Pattern outputs drive logic outputs and internal Matrix signals. . . . . . . . . Patterns are used to control State Machine flow. State outputs drive logic outputs and internal Matrix signals.
Limit Checking
Limits . . . . . . . . . . . . . . . . . . . . . . . . Each channel has a HI and LO limit with hysteresis.Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Latched/unlatched, absolute/signed.Data Type . . . . . . . Select either Current, Max, Min, Spread, or Held data for limit checking.
Alarm Enable/disable backlight flashing for each channel.
External +5VDC On I/O connector.
Maximum Load Current ..... 250mA.
Protection Short circuit (current limit),Overvoltage ( 1 A fuse) to $\pm 130 \mathrm{VDC}$ or 130 VAC .
Two Analog Outputs Each assignable to any of the three channels.
Output Impedance ..... $<1 \Omega$.
Minimum Load Resistance ..... $10 \mathrm{k} \Omega$.
Full Scale $\pm 5 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ (user selectable).
Resolution ..... $2 \mathrm{mV}( \pm 5 \mathrm{VFS})$ or $4 \mathrm{mV}( \pm 10 \mathrm{VFS})$.
Overrange ..... $\pm 8.2 \mathrm{~V}( \pm 5 \mathrm{~V}$ FS $)$ or $\pm 13.5 \mathrm{~V}( \pm 10 \mathrm{~V}$ FS).
Non-linearity $\pm 2 \mathrm{mV}( \pm 5 \mathrm{~V}$ FS) or $\pm 4 \mathrm{mV}$ ( $\pm 10 \mathrm{~V}$ FS).
Overall Error (including temperature effects) $\pm 5 \mathrm{mV}$ ( $\pm 5 \mathrm{~V}$ FS) or $\pm 10 \mathrm{mV}$ ( $\pm 10 \mathrm{~V}$ FS).
Filter $100 \mathrm{~Hz}, 5$ pole Bessel response low pass filter.
Protection Short circuit (current limit),Overvoltage ( 0.25 A fuse) to $\pm 130 \mathrm{VDC}$ or 130VAC.
Serial Communication Port User selectable as RS232, RS422, or RS485.
BAUD Rate ..... 300 to 38400.
Maximum Number of Devices ..... 32 (RS485), 1 (RS232/422).
Maximum Cable Length ..... 4000ft (RS422/RS485), 50ft (RS232).
120』 Termination Resistors (RS485) User selectable for RXD and TXD.RS422/485 Transceivers . . Slew-rate limited, short circuit protected (current \& thermal limits).RS232 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . Short circuit protected (current limit).All Serial Inputs and Outputs . . . . $\pm 15 \mathrm{kV}$ ESD protected, floating ( $100 \mathrm{k} \Omega$ to Earth Ground).
Connector on Rear Panel 9 pin D (female).
Commands Control of all modes, settings, and measurements.
Non-Volatile Memory Storage for System Settings EEPROM, no battery required.
Input Voltage
Standard: 90 to 250VAC, 50/60Hz @ 25VA (max). with two 2A/250V fuses, line filter, and rear power switch. Option 12D1: 10 to 15VDC @ 15W (max). with $2 \mathrm{~A} / 250 \mathrm{~V}$ fuse (spare one is provided), filter, and rear power switch.
Operating Temperature ..... $+41^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left(+5^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
Weight (includes two signal conditioning modules) 3.Olbs.
Dimensions $6.5^{"}$ wide, $2.9 "$ high, 8.7 " deep.

[^5]
## Model ACUA (AC Strain Gage Amplifier) Specifications

Transducer
Type
Any strain gage transducer, directly wired or transformer coupled.Impedance80 to $2000 \Omega$.
Connections Provision for 4, 6, or 7 wire circuits.
Maximum Cable Length 500 ft (for transducer impedance $\geq 100 \Omega$ ). 200 ft (for transducer impedance $<100 \Omega$ ).
ExcitationAmplitude . . . . . . . . . . . . . . . . . . 3Vrms sine wave, regulated, and short circuit protected.Frequency$3030 \mathrm{~Hz} \pm 0.01 \%$.
Synchronization Automatically synchronized with other carrier amplifier, if present.
Signal Input
Sensitivity 0.5 to $5 \mathrm{mV} / \mathrm{V}$.
Impedance $100 \mathrm{M} \Omega$ in parallel with 33 pF .
Overrange Capability 50\% of Full Scale.
Null Range
In-Phase Signals . . . . . . . . . . . . . . . . $\pm 10 \%$ of Full Scale (with $50 \%$ overrange capability).$\pm 60 \%$ of Full Scale (with 0\% overrange capability).
Quadrature Signals $\pm 1 \mathrm{mV} / \mathrm{V}$.
Calibration Dual polarity shunt calibration with provision for CAL resistor feedback.
Common/Normal Mode Rejection $120 / 100 \mathrm{~dB}$ at 60 Hz .
Quadrature Rejection ..... 60dB.
Antialias Filtering $200 \mathrm{~Hz}, 7$ pole Bessel response filter.
Low Pass Filtering 4 pole Bessel response digital filter with 10X oversampling. 11 cutoff frequencies from 0.1 to 200 Hz (in $1-2-5$ steps).
Signal-to-Noise Ratio ${ }^{2}$ 0.5mV/V Full Scale: 80/72/62/58dB with $1 / 10 / 100 / 200 \mathrm{~Hz}$ filters.
$1 \mathrm{mV} / \mathrm{V}$ Full Scale: 86/76/66/62dB with 1/10/100/200Hz filters. $5 \mathrm{mV} / \mathrm{V}$ Full Scale: 86/80/72/66dB with $1 / 10 / 100 / 200 \mathrm{~Hz}$ filters.
Resolution $0.01 \%$ of Full Scale.
Overall Accuracy (at $77^{\circ} \mathrm{F} / 25^{\circ} \mathrm{C}$ ) 0.02\% of Full Scale.
Zero Temperature Effects $\pm 0.001 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}$ (max).
Span Temperature Effects $\pm 0.001 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}$ (max).

1. Specifications are subject to change without notice.2. Ratio expressed in decibels (dB), of Full Scale to noise spread. Measurements made for a 1 minute interval using a $350 \Omega$ bridge.

## Model LVDA (LVDT Amplifier) Specifications

Transducer	
Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Any 4, 5, or 6 wire LVDT.	
Impedance	$\geq 80 \Omega$ at the selected frequency.
Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Includes provision for excitation sense.	
Excitation	
Amplitude . . . . . . . . . . . . . . . . 2 Vrms sine wave, regulated, and short circuit protected.	
Frequency Stability . . . . . . . . . . . . . . . . . . $\pm 0.01 \%$ over full operating temperature range	
Signal Input	
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 to 1000mV/V.	
Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100kת	
Overrange Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50\% of Full Scale	
Automatic Zero Range . . . . . . . . . . . $\quad \pm \begin{aligned} & \text { (10\% of Full Scale (with 50\% } \\ & \\ & \pm 60 \% \text { of Full Scale (with 0\% }\end{aligned}$	
Auto Calibration . . . . . . . . . . . . . . . . . . . Dual polarity calibration with CAL-CHECK function.	
Common/Normal Mode Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120/70dB at 60Hz.	
Quadrature Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60dB.	
Antialias Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 200Hz, 7 pole Bessel response filter.	
Low Pass Filtering . . . . . . . . . . . 4 pole Bessel response digital filter with 10X oversampling. 11 cutoff frequencies from 0.1 to 200 Hz (in 1-2-5 steps).	
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0.01 \%$ of Full Scale.	
Overall Accuracy (at $77^{\circ} \mathrm{F} / 25^{\circ} \mathrm{C}$ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . $0.02 \%$ of Full Scale	
Zero Temperature Effects . . . . . . . . . . . . . . . . . . . . . $\pm 0.001 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}$ (max).	
Span Temperature Effects . . $2.5 \mathrm{kHz}, 3 \mathrm{kHz}, 5 \mathrm{kHz}$ excitation: $\pm 0.001 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}(\mathrm{max})$.10 kHz excitaion: $\pm 0.002 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}(\mathrm{max})$.	
1. Specifications are subject to change without notice.2. Ratio expressed in decibels (dB), of Full ccale to noise spread. Measurements made for a 1 minute interval using a $100 \Omega$ source impedance,	

## Model DCSA (DC Strain Gage Amplifier) Specifications

Transducer
Type DC strain gage transducer, directly wired, not transformer coupled.Resistance80 to $2000 \Omega$ (with 5VDC excitation).170 to $2000 \Omega$ (with 10 VDC excitation).
Connections Provision for 4,6 , or 7 wire circuits.
Maximum Cable Length 500ft.
Excitation 5 or 10VDC, user selectable via jumper. Regulated and short circuit protected.
Input
Sensitivity 1 to $4.5 \mathrm{mV} / \mathrm{V}$. Differential Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100M
Overrange Capability 50\% of Full Scale.
Automatic Zero Range $\pm 10 \%$ of Full Scale (with 50\% overrange capability). $\pm 60 \%$ of Full Scale (with 0\% overrange capability).
Tare Range $\pm 100 \%$ of Full Scale. Tare may be actuated from keypad or remotely via logic I/O or serial communication port.
Auto Calibration
Shunt and Load Types Dual polarity calibration with provision for CAL resistor feedback.
mV/V Type Absolute span calibration.
Spurious Signal Rejection 130 dB for 60 Hz common mode signal.
Antialias Filtering $200 \mathrm{~Hz}, 5$ pole Bessel response filter.
Low Pass Filtering 4 pole Bessel response digital filter with 10X oversampling. 11 cutoff frequencies from 0.1 to 200 Hz (in $1-2-5$ steps).
Signal-to-Noise Ratio ${ }^{2}$ $1 \mathrm{mV} / \mathrm{V}$ FS \& 5V Exc: 80/70/59/55dB with $1 / 10 / 100 / 200 \mathrm{~Hz}$ filters. $1 \mathrm{mV} / \mathrm{V}$ FS \& 10V Exc: 80/74/64/60dB with 1/10/100/200Hz filters. $4.5 \mathrm{mV} / \mathrm{V}$ FS \& 5V Exc: $86 / 74 / 68 / 64 \mathrm{~dB}$ with $1 / 10 / 100 / 200 \mathrm{~Hz}$ filters. $4.5 \mathrm{mV} / \mathrm{V}$ FS \& 10V Exc: $86 / 86 / 74 / 68 \mathrm{~dB}$ with $1 / 10 / 100 / 200 \mathrm{~Hz}$ filters.
Resolution $0.01 \%$ of Full Scale.
Overall Accuracy (at $77^{\circ} \mathrm{F} / 25^{\circ} \mathrm{C}$ ) . . . . . . . . . . . . . . . . . . . . . . $0.01 \%$ of Full Scale (typical).$0.02 \%$ of Full Scale (worst case).
Zero Temperature Effects . . . . . . . . . . . . . . . . . . . . . . $\pm 0.001 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}$ (max).
Span Temperature Effects . . . . . . . . . . . . . . . . . . . . . . $\pm 0.001 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}$ (max).

[^6]2. Ratio expressed in decibels (dB), of Full Scale to noise spread. Measurements made for a 1 minute interval using a $100 \Omega$ source impedance.

## Model DCVA (DC Voltage Amplifier) Specifications



## Model DCIA (DC Current Amplifier) Specifications

Current Input
Type

$\qquad$Ranges ... $4-20 \mathrm{~mA}, 12 \pm 8 \mathrm{~mA}, 0 \pm 10 \mathrm{~mA}$, or $0 \pm 20 \mathrm{~mA}$ (selectable from keypad or remotely).Impedance . . . . . . . . . . . . . . . . . . . $100 \Omega$ (differential), 200k $\Omega$ (negative input to ground).Protection . . . . . . . . . . . . . . . . . . . . . . . $\pm 130 \mathrm{VDC}$ or 130VAC at each input to ground.Differential inputs protected by 62 mA fuse.
Maximum Cable Length ..... 2000ft.
Excitation Supply ..... 15 V.
Maximum Load Current ..... 30 mA .
Protection Short circuit (current limit),Overvoltage ( 62.5 mA fuse) to $\pm 130 \mathrm{VDC}$ or 130 VAC .
Overrange Capability 50\% of Full Scale.
Calibration . . . . . . . . . . . . . . Absolute calibration is automatic when current range is selected.

Common Mode Rejection Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >80dB (DC to 10MHz).
Antialias Filtering $200 \mathrm{~Hz}, 5$ pole Bessel response filter.
Low Pass Filtering 4 pole Bessel response digital filter with 10X oversampling.
11 cutoff frequencies from 0.1 to 200 Hz (in 1-2-5 steps).
Signal-to-Noise Ratio ${ }^{2}$ $86 / 80 / 70 / 63 d B$ with $1 / 10 / 100 / 200 \mathrm{~Hz}$ filters.
Resolution $0.01 \%$ of Full Scale.
Overall Accuracy (at $77^{\circ} \mathrm{F} / 25^{\circ} \mathrm{C}$ ) 0.02\% of Full Scale (typical). $0.03 \%$ of Full Scale (worst case).
Zero Temperature Effects . . . . . . . . . . . . . . . . . . . . . . . $\pm 0.001 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}$ (max).
Span Temperature Effects $\pm 0.001 \%$ of Full Scale per ${ }^{\circ} \mathrm{F}$ (max).

1. Specifications are subject to change without notice.
2. Ratio expressed in decibels (dB), of Full Scale to noise spread. Measurements made for a 1 minute interval using a $100 \Omega$ source impedance.

## Model CTUA (Frequency Input Module) Specifications



[^7]
## Model UDCA (Encoder/Totalizer Module) Specifications

Signal Source Rotary and linear quadrature encoders or TTL events.
Maximum Cable Length 500ft.
Excitation Supplies ${ }^{2}$ 5 V and 12 V .
Maximum Load Currents . . . . . . . . . . . . . . . . . . . . . $250 \mathrm{~mA}^{2}$ (for 5V) or $125 \mathrm{~mA}^{2}$ (for 12V).Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short circuit (current limit),Overvoltage (fuses: 1 A for $5 \mathrm{~V}, 375 \mathrm{~mA}$ for 12 V ) to $\pm 130 \mathrm{VDC}$ or 130 VAC .
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal A, Signal B, Reset, Reset Arm.
Type ..... Single ended, TTL.
Impedance ..... $50 \mathrm{k} \Omega$.
Maximum Voltage ..... 130 VDC or 130VAC.
Bandwidth ..... 400 kHz .
Operating Modes
Quadrature Encoder Mode Counts input cycles once (1X), or doubles (2X),or quadruples (4X) the number of input pulses.Choose $A$ leads $B$ or $B$ leads $A$ for incrementing direction of counter.
Totalizer Mode Counts edges of Signal A.Choose Rising Edge or Falling Edge.
Counter Reset Via the RESET key, the Logic I/O, or the transducer connector.Reset Via the Transducer Connector . . . . . . . . . . . . . . . . Choose TTL Low, TTL High, or Ignore.Reset Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . Choose Leading Edge, Level, /B, B, /A, A,$/ A$ AND $/ B$, /A AND $B, A$ AND $/ B$, or $A$ AND $B$.
Reset Arm Signal Enables Reset signal (choose TTL Low, TTL High, or Ignore).
Internal Counter 48 bits
Resolution $0.01 \%$ of Full Scale.
Response Time ..... 0.5 ms.
Low Pass Filtering of Input Data Unfiltered or 4 pole Bessel response digital filter. 10 cutoff frequencies from 0.1 to 100 Hz (in 1-2-5 steps).

## Option MA (Current Output) Specifications

Output (two jumper selected modes, as follows)
Unidirectional Mode ..... 4-20mA.
Bi-directional Mode ..... $12 \pm 8 \mathrm{~mA}$.
Resolution
Unidirectional Mode $6.4 \mu \mathrm{~A}$.
Bi-directional Mode ..... $3.2 \mu \mathrm{~A}$.
Overrange Capability
Unidirectional Mode 0.8 to 23.2 mA .Bi-directional Mode$12 \pm 11.2 \mathrm{~mA}$.
Non-linearity
Unidirectional Mode ..... $\pm 8 \mu \mathrm{~A}$.
Bi-directional Mode ..... $\pm 4 \mu \mathrm{~A}$.
Overall Error (including temperature effects)
Unidirectional Mode ..... $\pm 20 \mu \mathrm{~A}$.
Bi-directional Mode ..... $\pm 10 \mu \mathrm{~A}$.
Output Filter $100 \mathrm{~Hz}, 5$ pole Bessel response low pass filter.
Load Resistance 0 to $200 \Omega$, maximum.
Protection Overvoltage (0.25A fuse) to $\pm 130 \mathrm{VDC}$ or 130 VAC .

1. Specifications are subject to change without notice
Option MB (Current Output) Specifications
Output ..... $10 \pm 10 \mathrm{~mA}$.
Resolution ..... $4 \mu \mathrm{~A}$.
Overrange Capability 0 to 23.2 mA .
Non-linearity ..... $\pm 5 \mu \mathrm{~A}$.
Overall Error (including temperature effects) ..... $\pm 12 \mu \mathrm{~A}$.
Output Filter $100 \mathrm{~Hz}, 5$ pole Bessel response low pass filter.
Load Resistance 0 to $500 \Omega$, maximum.
Protection Overvoltage (0.25A fuse) to $\pm 130 \mathrm{VDC}$ or 130 VAC .
[^8]
## Option MC (Voltage Output) Specifications

Output	$5 \pm 5 \mathrm{~V}$.
Resolution	. . 2 mV .
Overrange Capability	. . . . 0 to 12 V .
Non-linearity	$\cdots \pm 2.5 \mathrm{mV}$.
Overall Error (including temperature effects)	. . . . . . . . . . . . . . . . $\pm 6 \mathrm{mV}$.
Output Filter	$100 \mathrm{~Hz}, 5$ pole Bessel response low pass filter.
Output Impedance	. . . . . . . . . . . . . . . . . . . < $1 \Omega$.
Minimum Load Resistance	. . . . . . . . . . . . . . 10 k ,
Protection	Short circuit (current limit), oltage ( 0.25 A fuse) to $\pm 130 \mathrm{VDC}$ or 130 VAC .

[^9]
[^0]:    $1 \rightarrow$ assigned

    - $\rightarrow$ not assigned

[^1]:    Model DCSA
    Excitation: 5 or 10VDC
    Excitation Load: 80 to $2000 \Omega(5 \mathrm{~V})$ 170 to $2000 \Omega$ (10V)
    Input Sensitivity: 1 to $4.5 \mathrm{mV} / \mathrm{V}$ Max Cable Length: 500ft

[^2]:    * Both excitation voltages can be used simultaneously with the following restrictions.
    $(5 \mathrm{~V}$ current $)+6 \times(15 \mathrm{~V}$ current $) \leq 700 \mathrm{~mA}, 5 \mathrm{~V}$ current $\leq 250 \mathrm{~mA}$, 15 V current $\leq 100 \mathrm{~mA}$

[^3]:    * Both excitation voltages can be used simultaneously with the following restrictions.

[^4]:    4. For Shunt and Load calibrations only.
    5. For Shunt-Pos/Neg, Load-Pos/Neg, and mV/V-Pos/Neg only.
    6. For Load-Pos/Neg only.
[^5]:    1. Specifications are subject to change without notice
[^6]:    1. Specifications are subject to change without notice.
[^7]:    3. Low pass hardware filter is not available for TTL signals.
[^8]:    1. Specifications are subject to change without notice.
[^9]:    1. Specifications are subject to change without notice.
